纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 24-33.doi: 10.13475/j.fzxb.20210301311

• 纺织科技新见解学术沙龙专栏:循环再生及生物可降解纤维 • 上一篇    下一篇

纺织工业典型污染物治理技术回顾

章耀鹏1,2, 沈忱思1,2, 徐晨烨1,2, 李方1,2()   

  1. 1.东华大学 环境科学与工程学院, 上海 201620
    2.东华大学 国家环境保护纺织工业污染 防治工程技术中心, 上海 201620
  • 收稿日期:2021-03-02 修回日期:2021-05-02 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 李方
  • 作者简介:章耀鹏(1996—),男,博士生。主要研究方向为水污染控制化学。
  • 基金资助:
    国家重点研发计划项目(2020YFE0201400);国家重点研发计划项目(2016YFC0400503);新疆生产建设兵团重大科技计划项目(2020AA001)

Review on treatment technology for typical pollutants in textile industry

ZHANG Yaopeng1,2, SHEN Chensi1,2, XU Chenye1,2, LI Fang1,2()   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, China
  • Received:2021-03-02 Revised:2021-05-02 Published:2021-08-15 Online:2021-08-24
  • Contact: LI Fang

摘要:

随着生态文明建设理念的提升及产业转型升级的需要,纺织工业排放标准和环境管理要求日趋严格。为更好地预防及消除纺织行业产生的污染,在梳理行业典型产排污特征的基础上,针对重金属、浆料、染料及其中间体三大类特征污染物,分别从物化处理、生化处理及高级氧化处理等方面展开典型污染物治理技术的梳理与分析,对其处理效果进行比较及总结,并结合我国环境管理制度发展情况对目前的治理技术发展现状给出建议。提出“物化-生化-深度处理”多重联动技术的开发是纺织工业向绿色发展转型的关键思路,为未来纺织工业水污染治理技术的绿色发展提供了方向。

关键词: 纺织工业, 重金属, 浆料, 染料及中间体, 污染物, 污水处理技术

Abstract:

With the improvement of the concept of "the construction ecological civilization" and the need for industrial transformation and upgrading, the emission standards and environmental management requirements of textile industry are increasingly more strict. In order to further eliminate the pollution generated by the textile industry, the treatment technologies for the removal of the three typical textile-related pollutants, including heavy metals, sizing regent, dyes and their intermediates, were analyzed and concluded from the aspects of physicochemical, biochemical and advanced oxidation treatments during the textile production and discharge. The efficiency of different treatment technologies to remove pollutants was compared, and the suggestions are given based on the development stage of China. It is pointed out that the development of multi linkage technology of "physicochemical-biochemical-advanced treatment" is the key to the transformation of textile industry to green development, which provide a new ideas for the future green development of textile industry.

Key words: textile industry, heavy metal, sizing regent, dye and intermediate, pollutant, waste water treatment technology

中图分类号: 

  • X1

表1

Sb去除方法的条件及处理效果总结"

处理方法 处理条件 废水水质 处理效果 参考文献
混凝沉淀法 PFS 投加量为500 mg/L,pH=9,室温 含锑废水(模拟废水)
ρ(总Sb)=5 mg/L
总Sb去除率为98.0% [13]
PFS 投加量为30~90 mg/L,pH=6~8,温度为10~25 ℃ 含锑废水(模拟废水)
ρ(Sb(Ⅴ))=20 μg/L
Sb(V)去除率为98.4% [21]
氯化铁 投加量为4×10-4 mol/L,pH=3~10,室温 含锑废水(模拟废水)
ρ(Sb(III/Ⅴ))=100 μg/L
Sb(III)去除率为93.0%
Sb(V)去除率为73.0%
[22]
吸附法 复合藻粉 投加量为0.6 g/L,
pH=7.5,室温
含锑废水(模拟废水)
ρ(Sb(III/V))=25 mg/L
qm,Sb(III)=175.8 mg/g
qm,Sb(V)=4.9 mg/g
[16]
磁性赤铁矿 投加量为100 mg/L,
pH=7,室温
含锑废水(模拟废水)
ρ(Sb(III))=110 μg/L
qm,Sb(III)=36.7 mg/g [23]
UiO-66(NH2) 投加量为1 g/L,pH=7,室温 含锑废水(实际废水)
ρ(Sb(III/V))=10 mg/L
Sb(III)去除率可达99.2%
Sb(V)去除率可达99.1%
[17]
改性碳纳米管 投加量为2.5 g/L,
pH=5,室温
含锑废水(模拟废水)
ρ(Sb(III/V))=50 mg/L
qm,Sb(III/V)=250.0 mg/g [24]
电场辅助吸附 电压为2 V,流速为
1.5 mL/min,pH=7,室温
含锑废水(模拟废水)
ρ(Sb(III))=100 μg/L
Sb(III)去除率可达90.0% [18]
电混凝 电压为6 V,电流密度为
10 mA/cm2,pH=2.5,室温
含锑废水(模拟废水)
ρ(Sb(III/V))=1 mg/L
Sb(III)去除率可达99.5%
Sb(V)去除率可达97.2%
[19]
壳聚糖络合超滤 络合反应1 h,pH=6,
装载比为10
含锑废水(模拟废水)
ρ(Sb(III))=100 μg/L
Sb(III)截留率可达96.5% [25]

表2

Cr去除方法的条件及处理效果总结"

处理方法 处理条件 废水水质 处理效果 参考文献
还原-沉
淀法
紫外线/过硫
酸盐
投加量为5 mmol/L,
pH=5~10,室温,无氧
含铬废水(模拟废水)
ρ(Cr(VI))=5 mg/L
Cr(VI)去除率可达100.0% [29]
零价铁电化
学法
投加量为0.08 mg/L,pH=5,室温 含铬废水(模拟废水)
ρ(Cr(VI))=10 mg/L
Cr(VI)去除率可达95.4% [30]
吸附法 HCM 投加量为0.4 g/L,pH=2,室温 含铬废水(模拟废水)
ρ(Cr(VI))=40~300 mg/L
qm,Cr(VI)=332.5 mg/g [31]
Fe3O4/Mg(OH)2 投加量为0.4 g/L,pH=10,室温 含铬废水(模拟废水)
ρ(Cr(VI))=10 mg/L
qm,Cr(VI)=15.5 mg/g [32]
UFB-PPy 投加量为0.5 g/L,pH=2~12,室温 含铬废水(模拟废水)
ρ(Cr(VI))=10~150 mg/L
qm,Cr(VI)=86.7 mg/g [33]
还原-吸附/
吸附-还原法
苹果木生物炭 投加量为10 g/L,pH=2,室温 含铬废水(模拟废水)
ρ(Cr(VI))=50 mg/L
Cr(VI)去除率可达99.9% [35]
PANI/PS 投加量为1 g/L,pH=6,室温 含铬废水(模拟废水)
ρ(Cr(VI))=10~200 mg/L
qm,Cr(VI)=233.7 mg/g [36]
nZVI/C 投加量为200 mg/L,pH=3,室温 含铬废水(模拟废水)
ρ(Cr(VI))=200~2 000 mg/L
qm,Cr(VI)=814.9 mg/g [37]
破络-还
原法
CS-Fe-Cu 投加量为1 g/L,ρ(H2O2)=20 mmol/L,pH=6,室温 含铬废水(模拟废水)
ρ(Cr(III))=5 mg/L
ρ(酸性蓝193)=50 mg/L
脱色率为100.0%,总铬去除率为90.0%,Cr(VI)最大积累量小于0.1 mg/L [39]

表3

纺织浆料去除方法的条件及处理效果总结"

处理方法 处理条件 废水水质 处理效果 参考文献
聚乙烯醇 Fenton ρ(Fe2+)=30 mmol/L,
ρ(H2O2)=50 mmol/L,
pH=6,室温
浆料废水(实际废水)
ρ(CODCr)=3 822 mg/L
ρ(PVA)=326 mg/L
CODcr去除率为50.9%
浊度去除率为99.8%
[51]
Fenton预处理-钙盐絮凝 ρ(FeSO4·7H2O)=8 g/L,
ρ(H2O2)=0.02 g/L,
ρ(CaCl2)=0.02 g/L,
pH=3.5,室温
浆料废水(模拟废水)
ρ(PVA)=10 g/L
PVA去除率为96.0%
CODCr去除率为81.3%
[48]
自由基交联 ρ(过硫酸钾)=10 g/L,反应温度为70 ℃ 浆料废水(模拟废水)
ρ(PVA)=10 g/L
PVA去除率大于90.0%
CODCr去除率大于90.0%
[47]
淀粉 超滤+反渗透 运行压力为0.15 MPa,pH=7~9,室温 染料废水(实际废水)
ρ(CODCr)=7 500~8 000 mg/L
ρ(悬浮物)=800~2 000 mg/L
CODCr去除率大于98.8%
悬浮物去除率大于99.0%
[52]
2级上流式厌氧污泥床+厌氧好氧工艺 有机负荷为4 kg/(m3·d),
曝气量为18.53 m3/min,室温
浆料废水(实际废水)
ρ(CODCr)=1 000~
2 000 mg/L
ρ(氨氮)=10~50 mg/L
出水CODCr≤93.0 mg/L
出水氨氮≤7.0 mg/L
[53]
海藻酸钠 Fenton ρ(Fe2+)=8 mg/L,ρ(H2O2)=50 mmol/L,pH=5.3,反应温度为50 ℃ 染料废水(模拟废水)
ρ(海藻酸钠)=15 g/L
海藻酸钠去除率可达85.2% [54]
上流式厌氧污泥床 有机负荷为6 kg/(m3·d),pH=7~9,自然水温 浆料废水(实际废水)ρ(CODCr)=3 000~7 000 mg/L CODCr去除率平均为80.0% [55]

表4

纺织染料去除方法的条件及处理效果总结"

处理方法 处理条件 废水水质 处理效果 参考文献
吸附 改性淀粉 投加量为500 mg/L,pH=3~10,室温 染料废水(模拟废水)
ρ(亚甲基蓝)=200 mg/L
qm,亚蓝基蓝=157.8 mg/g [56]
金属有机框架 投加量为1 600 mg/L,室温 染料废水(模拟废水)
ρ(罗丹明B)=20~250 mg/L
qm,罗丹明B =565.0 mg/g [57]
壳聚糖吸附剂 投加量为2 000 mg/L,
中性条件,反应温度为30 ℃
染料废水(模拟废水)
ρ(活性红紫)=800 mg/L
ρ(活性红)=800 mg/L
ρ(活性黄)=800 mg/L
qm,活性红紫 =400.0 mg/g
qm,活性红 =398.4 mg/g
qm,活性黄 =404.9 mg/g
[58]
混凝/絮凝 氢氧化镁混凝 镁离子投加量为150 mg/L,
高岭土投加量为10 mg/L,室温
染料废水(模拟废水)
ρ(活性橙)=250 mg/L
染料去除率大于98.0% [59]
氯化铝混凝 投加量为100 mg/L,室温 染料废水(模拟废水)
ρ(分散红)=100 mg/L
染料去除率可达96.9% [60]
膜分离 纳滤 渗透率为1.26×10-4 L/(h·m2·Pa),运行时间为700 min 染料废水(模拟废水)
ρ(刚果红)=500 mg/L
截留率可达99.2% [61]
超滤 铸膜液中氧化石墨烯添加量为
0%~0.9%
染料废水(模拟废水)
ρ(刚果红)=50 mg/L
ρ(NaCl)=1 mol/L
截留率可达75.2% [62]
化学氧化法 流化床+Fenton
氧化工艺
ρ(染料)∶ ρ(Fe2+)∶ρ(H2O2)=
1∶0.1∶2.5,pH=3,填料负载量为20 g
染料废水(模拟废水)
ρ(活性黑5)=500 mg/L
CODCr去除率为83.0%
色度去除率为99.0%
[63]
类Fenton 催化剂投加量为1 g/L,
ρ(H2O2)=5 mmol/L,pH=2
染料废水(模拟废水)
ρ(铬黑T)=50 mg/L
色度去除率为97.0% [64]
湿式过氧化氢氧化 ρ(H2O2)=0.01 mmol/L,反应温度为150 ℃,反应压力为0.5 MPa 染料废水(模拟废水)
ρ(活性艳蓝)=200 mg/L
色度去除率为100.0%
总有机碳去除率为68.0%
[65]
电催化氧化 改性钛电极,电流密度为168.9 A/m2,pH=4.5,室温 染料废水(模拟废水)
ρ(孔雀石绿)=150 mg/L
色度去除率为99.0%
总有机碳去除率为98.0%
[66]
电Fenton 改性石墨烯电极,ρ(Fe2+)=0.2 mmol/L,ρ(Na2SO4)=50 mmol/L,pH=3 染料废水(模拟废水)
ρ(酸性橙7)=0.1 mmol/L
总有机碳去除率为94.0% [67]
臭氧/紫外光 臭氧投加量为8.5 mg/min,pH=11 染料废水(模拟废水)
ρ(直接蓝86)=100 mg/L
ρ(CODCr)=500 mg/L
CODCr去除率为62.0% [68]
光催化 投加量为1 000 mg/L,300 W氙灯 染料废水(模拟废水)
ρ(亚甲基蓝)=30 mg/L
亚甲基蓝降解率为98.6% [69]
紫外光/过硫酸盐 ρ(过硫酸钾)=50 μmol/L,pH=2 染料废水(模拟废水)
ρ(罗丹明B)=10 μmol/L
色度去除率为100.0%
总有机碳去除率为60.0%
[70]
生物法 固定床生物
反应器
水力停留时间为3 h,容积负荷为
1.7 kg COD/(m3·d),气水比为1.5∶1,温度为30℃
染料废水(模拟废水)
ρ(活性艳红)=50 mg/L
CODcr去除率为88.2%
色度去除率为87.4%
UV254去除率为76.6%
[71]
厌氧析流板反应器(ABR) ρ(混合液挥发性悬浮固体)=15.6 g/L,ρ(混合液悬浮固体)=32.5 g/L,水力停留时间分别为32、24、18、14和10 h 印染废水(实际废水)
ρ(CODCr)=517 mg/L
ρ(BOD5)=95 mg/L
色度为380倍
pH=8.37
CODCr最大去除率为46.1%
色度最大去除率为63.5%
[72]
偶氮染料脱色菌 ρ(氯化铵)=1 g/L,ρ(葡萄糖)=2 g/L,厌氧条件,温度为30~40 ℃, pH=7~9 染料废水(模拟废水)
ρ(酸性红B)=80 mg/L
色度去除率可达98.73% [73]
小球藻 昼夜比为1∶1,pH=7.2,室温 印染废水(实际废水)
ρ(BOD5)=630 mg/L
ρ(氨氮)为347 mg/L
ρ(Cl-)=847 mg/L
色度去除率可达85.0% [74]

表5

苯胺去除方法的条件及处理效果总结"

处理方法 处理条件 废水水质 处理效果 参考文献
磁性树脂吸附 投加量为800 mg/L,pH=5,
温度为30 ℃,吸附时间为3 h
苯胺废水(模拟废水)
ρ(苯胺)=100 mg/L
苯胺去除率大于80.0% [86]
混凝/絮凝+气浮 药剂投加量为20 mg/L,絮凝时间为10 min,
气浮时间为20 s,压力为0.4 MPa,pH=6
苯胺废水(模拟废水)
ρ(苯胺)=200 mg/L
苯胺去除率为95.0%
CODCr去除率为89.6%
[87]
TiO2/紫外-H2O2 催化剂投加量为320 mg/L,H2O2投加量为1%,紫外光灯功率为150 W,回流比为50% 苯胺废水(实际废水)ρ(CODCr)=700~1 100 mg/L
色度为1 000~1 500倍
出水CODCr≤60.0 mg/L
色度≤20.0倍
[88]
微生物电
池-Fenton
Ag/AgCl电极,pH=7.2,室温,
曝气量为16 mL/min,电压为0.5 V
苯胺废水(实际废水)
ρ(苯胺)=4 460 mg/L
ρ(总有机碳)=3 360 mg/L
苯胺去除效率为30.0 g/(L·h)
总有机碳去除率为93.1%
[89]
A2/O 好氧型8%+厌氧型4%包埋菌,污泥回流比为70%~80%,硝化液回流比为200%,
水力停留时间为24 h
苯胺废水(模拟废水)
ρ(苯胺)=60 mg/L
CODCr去除率大于90.0%
总氮去除率为76.2%
氨氮去除率为91.0%
[85]
[1] LIN B, BAI R. Dynamic energy performance evaluation of Chinese textile industry[J]. Energy, 2020, 199:117388.
doi: 10.1016/j.energy.2020.117388
[2] LI Y, PINTO M C B, DIABAT A. Analyzing the critical success factor of CSR for the Chinese textile indus-try[J]. Journal of Cleaner Production, 2020, 260:120878.
doi: 10.1016/j.jclepro.2020.120878
[3] 梁龙. 印染行业: 值得期待的2021年[J]. 中国纺织, 2021(1):86-88.
LIANG Long. Printing and dyeing industry:2021 worth looking forward to[J]. China Textile, 2021(1):86-88.
[4] 吴绩新, 王瑾. 纺织行业污染治理的经济学分析[J]. 国际纺织导报, 2014, 42(11): 75-76,78-79.
WU Jixin, WANG Jin. Economic analysis of pollution control in textile industry[J]. Melliand China, 2014, 42(11): 75-76,78-79.
[5] 张丹, 姚洁, 王越, 等. 聚对苯二甲酸乙二醇酯合成的研究进展[J]. 现代化工, 2006, 26(Z1):80-83.
ZHANG Dan, YAO Jie, WANG Yue, et al. Research progress in synjournal of polyethylene terephthalate[J]. Modern Chemical Industry, 2006, 26(Z1):80-83.
[6] TAGHIZADEH M T, YEGANEH N, REZAEI M. Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3):1733-1746.
doi: 10.1007/s10973-014-4036-4
[7] SANG W, CUI J, FENG Y, et al. Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: mechanism and degradation path-ways[J]. Chemosphere, 2019, 223:416-424.
doi: 10.1016/j.chemosphere.2019.02.029
[8] 朱慧峰. 黄浦江上游水源中锑的分布与处置对策[J]. 净水技术, 2018, 37(5):25-32.
ZHU Huifeng. Distribution and control countermeasures for antimony in water source of Huangpu River upper stream[J]. Water Purification Technology, 2018, 37(5):25-32.
[9] KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17):4171-4179.
doi: 10.1016/S0043-1354(03)00351-8
[10] 黄鑫. 强化常规净水工艺处理饮用水源中锑的研究[D]. 长沙:湖南大学, 2005: 71.
HUANG Xin. Enhanced removal of antimony in drinking water resource through conventional water treatment process[D]. Changsha: Hunan University, 2005: 71.
[11] GUO X, WU Z, HE M. Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17):4327-4335.
doi: 10.1016/j.watres.2009.06.033
[12] 向帆. 强化混凝过程絮体形态演变特征及其对除锑(V)效果的影响[D]. 长沙:湖南大学, 2014: 84.
XIANG Fan. Characteristics of floc morphological evolution during enhanced coagulation and its effect on Sb(V) removal[D]. Changsha: Hunan University, 2014: 84.
[13] 张燕, 庞志华, 雷育涛, 等. 混凝沉淀法处理锑离子的影响因素及动力学研究[J]. 安全与环境学报, 2013, 13(3):50-53.
ZHANG Yan, PANG Zhihua, LEI Yutao, et al. Influential factors and kinetics of antinomy ion treatment by ways of flocculation and precipitation[J]. Journal of Safety and Environment, 2013, 13(3):50-53.
[14] GUO S, ZHANG G, GUO Y, et al. Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants[J]. Carbon, 2013, 60:437-444.
doi: 10.1016/j.carbon.2013.04.058
[15] KONG L, HE M. Mechanisms of Sb(III) photooxidation by the excitation of organic Fe(III) complexes[J]. Environmental Science & Technology, 2016, 50(13):6974-6982.
doi: 10.1021/acs.est.6b00857
[16] 赵济金, 戚菁, 吉庆华, 等. 铁锰改性铜绿微囊藻对锑的吸附性能[J]. 环境工程学报, 2019, 13(7):1573-1583.
ZHAO Jijin, Qi Jing, JI Qinghua, et al. Fabrication of iron-manganese oxide composite modified microcystis aeroginosa adsorbent for advanced antimony removal[J]. Chinese Journal of Environmental Engineering, 2019, 13(7):1573-1583.
[17] HE X, MIN X, LUO X. Efficient removal of anti-mony (III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study[J]. Journal of Chemical & Engineering Data, 2017, 62(4):1519-1529.
doi: 10.1021/acs.jced.7b00010
[18] LIU Y, WU P, LIU F, et al. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(III)[J]. Environmental Science & Technology, 2019, 53(3):1527-1535.
doi: 10.1021/acs.est.8b05936
[19] 张家兴, 王超, 杨波, 等. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10):4244-4248.
ZHANG Jiaxing, WANG Chao, YANG Bo, et al. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10):4244-4248.
[20] LEUZ A K, MÖNCH H, JOHNSON C A, et al. Sorption of Sb (III) and Sb (V) to goethite: influence on Sb(III) oxidation and mobilization[J]. Environmental Science & Technology, 2006, 40(23):7277-7282.
doi: 10.1021/es061284b
[21] 贺维鹏, 高源, 童丽, 等. 强化混凝过程絮体形态对锑(V)去除效果的影响[J]. 环境工程学报, 2015, 9(10):4773-4779.
HE Weipeng, GAO Yuan, TONG Li, et al. Effect of floc morphology on antimony(V) removal efficiency during enhanced coagulation[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4773-4779.
[22] GUO W, FU Z, WANG H, et al. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644:1277-1285.
doi: 10.1016/j.scitotenv.2018.07.034
[23] SHAN C, MA Z, TONG M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268:229-236.
doi: 10.1016/j.jhazmat.2014.01.020
[24] MISHRA S, DWIVEDI J, KUMAR A, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes[J]. RSC Advances, 2016, 6(98):95865-95878.
doi: 10.1039/C6RA18965B
[25] 汪柏春, 赵萌, 孟繁艺, 等. 壳聚糖络合超滤工艺去除原水中的锑[J]. 净水技术, 2018, 37(11):58-64.
WANG Baichun, ZHAO Meng, MENG Fanyi, et al. Technological process of complexation-ultrafiltration with chitosan for antimony removal in raw water[J]. Water Purification Technology, 2018, 37(11):58-64.
[26] SCHETTY G. The irgalan dyes-neutral-dyeing metal-complex dyes[J]. Journal of the Society of Dyers and Colourists, 1955, 71(12):705-724.
doi: 10.1111/j.1478-4408.1955.tb02065.x
[27] RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium:a review[J]. Water Research, 1991, 25(7):807-816.
doi: 10.1016/0043-1354(91)90160-R
[28] 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4):54-59.
LIU Fang. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environmental Pollution and Control, 2014, 36(4):54-59.
[29] XIE B, SHAN C, XU Z, et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation[J]. Chemical Engineering Journal, 2017, 308:791-797.
doi: 10.1016/j.cej.2016.09.123
[30] 梁晶, 王磊. 零价铁电化学法处理地下水中的六价铬[J]. 现代盐化工, 2020, 47(2):23-25.
LIANG Jing, WANG Lei. Treatment of hexavalent chromium in groundwater by zero-valent iron electrochemical[J]. Jiangsu Salt Science & Technology, 2020, 47(2):23-25.
[31] LIANG H, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI)[J]. Chemical Engineering Journal, 2019, 367:9-16.
doi: 10.1016/j.cej.2019.02.121
[32] 王家宏, 郭茹, 曹瑞华. 磁性Fe3O4@Mg(OH)2去除水中络合态三价铬[J]. 环境化学, 2020, 39(6):1660-1669.
WANG Jiahong, GUO Ru, CAO Ruihua. Removal of complexed trivalent chromium in water by magnetic Fe3O4@Mg(OH)2[J]. Enironmental Chemistry, 2020, 39(6):1660-1669.
[33] ZHANG L, NIU W, SUN J, et al. Efficient removal of Cr(VI) from water by the uniform fiber ball loaded with polypyrrole: static adsorption, dynamic adsorption and mechanism studies[J]. Chemosphere, 2020, 248:126102.
doi: 10.1016/j.chemosphere.2020.126102
[34] YE Y, JIANG Z, XU Z, et al. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism[J]. Water Research, 2017, 126:172-178.
doi: 10.1016/j.watres.2017.09.021
[35] LIU N, ZHANG Y, XU C, et al. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study[J]. Journal of Hazardous Materials, 2020, 384:121371.
doi: 10.1016/j.jhazmat.2019.121371
[36] DING J, PU L, WANG Y, et al. Adsorption and reduction of Cr(VI) together with Cr(III) sequestration by polyaniline confined in pores of polystyrene beads[J]. Environmental Science & Technology, 2018, 52(21):12602-12611.
doi: 10.1021/acs.est.8b02566
[37] ZHOU N, GONG K, HU Q, et al. Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction[J]. Chemosphere, 2020, 242:125235.
doi: 10.1016/j.chemosphere.2019.125235
[38] CHEBEIR M, LIU H. Kinetics and mechanisms of Cr(VI) formation via the oxidation of Cr(III) solid phases by chlorine in drinking water[J]. Environmental Science & Technology, 2016, 50(2):701-710.
doi: 10.1021/acs.est.5b05739
[39] SHEN C, LI H, WEN Y, et al. Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capture-reduction[J]. Chemical Engineering Journal, 2020, 383:123105.
doi: 10.1016/j.cej.2019.123105
[40] HALIMA N B. Poly(vinyl alcohol): review of its promising applications and insights into biodegrada-tion[J]. RSC Advances, 2016, 6(46):39823-39832.
doi: 10.1039/C6RA05742J
[41] WEI Y, FU J, WU J, et al. Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol(PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4[J]. Applied and Environmental Microbiology, 2018, 84(1):1898-1915.
[42] PAWAR I A, JOSHI P J, KADAM A D, et al. Ultrasound-based treatment approaches for intrinsic viscosity reduction of polyvinyl pyrrolidone (PVP)[J]. Ultrasonics Sonochemistry, 2014, 21(3):1108-1116.
doi: 10.1016/j.ultsonch.2013.12.013
[43] PIETRELLI L, FERRO S, REVERBERI A P, et al. Removal of polyethylene glycols from wastewater: a comparison of different approaches[J]. Chemosphere, 2021, 273:129725.
doi: 10.1016/j.chemosphere.2021.129725
[44] SUN W, CHEN L, ZHANG Y, et al. Synergistic effect of ozonation and ionizing radiation for PVA decomposition[J]. Journal of Environmental Sciences, 2015, 34:63-67.
doi: 10.1016/j.jes.2015.01.020
[45] ZIMMERMANN W, SCHINDLER H. Process for the separation of polyvinyl alcohol from aqueous solutions: US4166033A[P]. 1979-08-28.
[46] 郭丽, 奚旦立, 马春燕. 退浆废水中聚乙烯醇回收技术的研究[J]. 净水技术, 2008, 27(1):58-60.
GUO Li, XI Danli, MA Chunyan. Study on recovery method of polyvinyl alcohol in desizing wastewater[J]. Water Purification Technology, 2008, 27(1):58-60.
[47] LI F, MA H, SHEN C, et al. From the accelerated production of ·OH radicals to the crosslinking of polyvinyl alcohol: the role of free radicals initiated by persulfates[J]. Applied Catalysis B: Environmental, 2021, 285:119763.
doi: 10.1016/j.apcatb.2020.119763
[48] PAN Y, LIU Y, WU D, et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater[J]. Journal of Hazardous Materials, 2020, 389:121866.
doi: 10.1016/j.jhazmat.2019.121866
[49] SHEN C, PAN Y, WU D, et al. A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: the importance of covalent bond forming and magnesium coagulation[J]. Chemical Engineering Journal, 2019, 374:904-913.
doi: 10.1016/j.cej.2019.05.203
[50] 陶宇庆, 巩继贤, 任燕飞, 等. 印花废水中海藻酸钠的回收[J]. 针织工业, 2019(7):34-37.
TAO Yuqing, GONG Jixian, REN Yanfei, et al. Recovery of sodium alginate from printing waste-water[J]. Knitting Industries, 2019(7):34-37.
[51] GUO Y, LAI B, ZHOU Y X. Pretreatment of polyvinyl alcohol-containing desizing wastewater by the Fenton process: oxidation and coagulation[J]. Environmental Engineering Science, 2016, 33(3):160-166.
doi: 10.1089/ees.2015.0327
[52] 王应平, 何葆华. 膜集成技术处理马铃薯淀粉废水的实验研究[J]. 水处理技术, 2017, 43(10):114-116.
WANG Yingping, HE Baohua. Experimental study on integrating membrane technology of the potato starch wastewater[J]. Technology of Water Treatment, 2017, 43(10):114-116.
[53] 李桂荣, 杨静静, 许文峰, 等. 两级UASB+A/O处理红薯湿淀粉废水[J]. 中国给水排水, 2017, 33(24):118-120.
LI Guirong, YANG Jingjing, XU Wenfeng, et al. Application of two-stage UASB and A/O process for sweet potato wet starch wastewater treatment[J]. China Water & Wastewater, 2017, 33(24):118-120.
[54] 李晓霞, 徐爱华, 谢威扬, 等. H2O2氧化降解海藻酸钠[J]. 应用化学, 2009, 26(6):625-628.
LI Xiaoxia, XU Aihua, XIE Weiyang. et al. Oxidative degradation of alginate by hydrogen peroxide[J]. Chinese Journal of Applied Chemistry, 2009, 26(6):625-628.
[55] 管锡珺, 国孟德, 刘亚钦, 等. 改良UASB反应器处理海藻酸钠废水的试验研究[J]. 青岛理工大学学报, 2007, 28(3):1-3.
GUAN Xijun, GUO Mengde, LIU Yaqin, et al. Experimental study on the application of improved UASB reactor to treating calcium alginate wastewater under normal temperature[J]. Journal of Qingdao Technological University, 2007, 28(3):1-3.
[56] 王建坤, 郭晶, 张昊, 等. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11):103-110.
WANG Jiankun, GUO Jing, ZHANG Hao, et al. Adsorption properties of cross-linked amino starch onto methylene blue[J]. Journal of Textile Research, 2018, 39(11):103-110.
[57] GAO Y, DENG S Q, JIN X, et al. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water[J]. Chemical Engineering Journal, 2019, 357:129-139.
doi: 10.1016/j.cej.2018.09.124
[58] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(2):148-155.
HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes[J]. Journal of Textile Research, 2021, 42(2):148-155.
[59] 李文朴, 卢静芳, 柳美乐, 等. 高岭土对氢氧化镁混凝去除活性橙染料效果的影响[J]. 化工进展, 2017, 36(11):4286-4292.
LI Wenpu, LU Jingfang, LIU Meile, et al. Effect of kaolin on the removal of reactive orange by magnesium hydroxide coagulantion process[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4286-4292.
[60] MCYOTTO F, WEI Q, MACHARIA D K, et al. Effect of dye structure on color removal efficiency by coagulation[J]. Chemical Engineering Journal, 2021, 405:126674.
doi: 10.1016/j.cej.2020.126674
[61] YANG F, SADAM H, ZHANG Y, et al. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal[J]. Chemical Engineering Science, 2020, 225:115845.
doi: 10.1016/j.ces.2020.115845
[62] 韩硕, 王磊, 孟晓荣, 等. 氧化石墨烯改性PVDF超滤膜截留染料性能研究[J]. 水处理技术, 2018, 44(11):50-54.
HAN Shuo, WANG Lei, MENG Xiaorong, et al. Study on dye-trapping properties of PVDF ultrafiltration membrane modified by graphene oxide[J]. Technology of Water Treatment, 2018, 44(11):50-54.
[63] BELLO M M, RAMAN A A, ASGHAR A. Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: oxidation-adsorption synergy and surface interaction[J]. Journal of Water Process Engineering, 2020, 33:101001.
doi: 10.1016/j.jwpe.2019.101001
[64] OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2019, 243:243-252.
doi: 10.1016/j.apcatb.2018.10.050
[65] 贺玲, 刘红玉, 杨春平, 等. 湿式过氧化氢氧化活性艳蓝KN-R[J]. 环境工程学报, 2015, 9(9):4131-4137.
HE Ling, LIU Hongyu, YANG Chunping, et al. Wet hydrogen peroxide oxidation of reactive brilliant blue KN-R[J]. Chinese Journal of Environmental Engineering, 2015, 9(9):4131-4137.
[66] SINGH S, LO S L, SRIVASTAVA V C, et al. Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2911-2921.
doi: 10.1016/j.jece.2016.05.036
[67] LE T X H, BECHELANY M, LACOUR S, et al. High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode[J]. Carbon, 2015, 94:1003-1011.
doi: 10.1016/j.carbon.2015.07.086
[68] HASSAAN M A, NEMR A E, MADKOUR F F. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater[J]. The Egyptian Journal of Aquatic Research, 2017, 43(1):11-19.
doi: 10.1016/j.ejar.2016.09.006
[69] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4):107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4):107-113.
[70] DING X, GUTIERREZ L, CROUE J P, et al. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: kinetics, mechanisms, and comparison[J]. Chemosphere, 2020, 253:126655.
doi: 10.1016/j.chemosphere.2020.126655
[71] 陈诚, 蔡亚君, 王弘宇, 等. 基于染料降解菌的固定床生物反应器处理印染废水[J]. 中国给水排水, 2015, 31(7):90-92.
CHEN Cheng, CAI Yajun, WANG Hongyu, et al. Treatment of dyeing wastewater by a fixed bed bioreactor based on dye-degrading bacteria[J]. China Water & Wastewater, 2015, 31(7):90-92.
[72] 许明, 李小进, 吴海锁, 等. HRT对折流板式厌氧生物反应器处理印染废水的影响[J]. 环境科学研究, 2015, 28(3):466-473.
XU Ming, LI Xiaojin, WU Haisuo, et al. Effect of HRT on the treatment of dyeing wastewater by baffled plate anaerobic bioreactor[J]. Environmental Science Research, 2015, 28(3):466-473.
[73] 苏萌, 陶然, 杨扬, 等. 偶氮染料脱色菌Lysinibacillus sp.FS1的脱色性能[J]. 环境工程学报, 2015, 9(10):4664-4672.
SU Meng, TAO Ran, YANG Yang, et al. Decolorization of Lysinibacillus sp.FS1 by azo dye decolorization bacteria[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4664-4672.
[74] PATHAK V V, KOTHARI R, CHOPRA A K, et al. Experimental and kinetic studies for phycoremediation and dye removal by Chlorellapyrenoidosa from textile wastewater[J]. Journal of Environmental Management, 2015, 163:270-277.
doi: 10.1016/j.jenvman.2015.08.041
[75] HETHNAWI A, NASSAR N N, MANASRAH A D, et al. Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column[J]. Chemical Engineering Journal, 2017, 320:389-404.
doi: 10.1016/j.cej.2017.03.057
[76] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environmental Management, 2016, 182:351-366.
doi: 10.1016/j.jenvman.2016.07.090
[77] KALRA S S, MOHAN S, SINHA A, et al. Advanced oxidation processes for treatment of textile and dye wastewater: a review[C]//2011 2nd International Conference on Environmental Science and Development. Singapore: IACSIT Press, 2011: 271-275.
[78] CETINKAYA S G, MORCALI M H, AKARSU S, et al. Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater[J]. Sustainable Environment Research, 2018, 28(4):165-170.
doi: 10.1016/j.serj.2018.02.001
[79] GANIYU S O, ZHOU M, MARTÍNEZ H. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235:103-129.
doi: 10.1016/j.apcatb.2018.04.044
[80] LIU B, QU F, CHEN W, et al. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy[J]. Water Research, 2017, 125:72-80.
doi: 10.1016/j.watres.2017.08.035
[81] TANG S, TANG J, YUAN D, et al. Elimination of humic acid in water: comparison of UV/PDS and UV/PMS[J]. RSC Advances, 2020, 10(30):17627-17634.
doi: 10.1039/D0RA01787F
[82] BANAT I M, NIGAM P, SINGH D, et al. Microbial decolorization of textile-dye-containing effluents: a review[J]. Bioresource Technology, 1996, 58(3):217-227.
doi: 10.1016/S0960-8524(96)00113-7
[83] 石建鹏, 完颜华, et al. ZSM-5分子筛吸附水中苯胺的性能及应用[J]. 工业水处理, 2007, 27(5):37-40.
SHI Jianpeng, WAN Yanhua. Adsorption of aniline in water by ZSM-5 zeolite[J]. Industrial Water Treatment, 2007, 27(5):37-40.
[84] GANG X, WANG Q, QIAN Y, et al. Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: implication for textile wastewater treatment[J]. Journal of Hazardous Materials, 2019, 368:840-848.
doi: 10.1016/j.jhazmat.2019.02.009
[85] 陈恺, 任龙飞, 蔡浩东, 等. 新型生物强化A2/O系统在苯胺废水处理中的应用[J]. 环境工程学报, 2020, 14(7):1808-1816.
CHEN Kai, REN Longfei, CAI Haodong, et al. Application of a novel bioenhanced A2/O system to the treatment of aniline wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(7):1808-1816.
[86] 曹允洁. FeCo/H-103磁性树脂吸附苯胺废水的性能研究[J]. 化工技术与开发, 2020, 49(10):60-63.
CAO Yunjie. Study on the adsorption performance of FeCo/H-103 magnetic resin for aniline wastewater[J]. Chemical Technology and Development, 2020, 49(10):60-63.
[87] AHMADI S, MOSTAFAPOUR F K, BAZRAFSHAN E. Removal of aniline from aqueous solutions by coagulation/flocculation-flotation[J]. Chemical Science International Journal, 2017, 1:1-10.
[88] 张华, 张子鹏, 张澜澜, 等. H2O2强化光催化处理苯胺化工废水的应用试验[J]. 化工进展, 2020, 39(12):5299-5308.
ZHANG Hua, ZHANG Zipeng, ZHANG Lanlan, et al. Treatment of aniline wastewater by H2O2 enhanced photocatalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(12):5299-5308.
[89] LI X, JIN X, ZHAO N, et al. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system[J]. Water Research, 2017, 119:67-72.
doi: 10.1016/j.watres.2017.04.047
[1] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[2] 杨雯静, 武海良, 马建华, 姚一军, 沈艳琴. 毛纱上浆用丁二酸酐酰化明胶浆料的制备及其性能[J]. 纺织学报, 2021, 42(04): 93-100.
[3] 李伟, 张正桥, 吴兰娟, 刘倩, 魏安方, 程雪冬, 王太冉. 亚甲基丁二酸交联变性对淀粉浆料性能的影响[J]. 纺织学报, 2021, 42(03): 110-114.
[4] 李伟, 张正桥, 吴兰娟, 徐珍珍, 倪庆清, 鲁育豪. 磷酸酯-己酸酯化淀粉的制备及其浆膜性能[J]. 纺织学报, 2020, 41(10): 81-86.
[5] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[6] 李伟, 张正桥, 吴兰娟, 吴杰, 祝志峰. 双亲性淀粉浆料的研究进展[J]. 纺织学报, 2020, 41(07): 182-187.
[7] 李伟, 景元炜, 张正桥, 倪庆清, 徐珍珍, 刘新华. 己酸酯淀粉的制备及其上浆性能[J]. 纺织学报, 2020, 41(06): 76-80.
[8] 沈艳琴, 杨树, 武海良, 王忠梁. 浆纱用中低温水溶性淀粉浆料的研究进展[J]. 纺织学报, 2019, 40(06): 142-151.
[9] 汪风波, 王加毅, 孙正, 马颜雪, 吕迎智, 张魏峰, 吕艳, 吕明明, 陈思雨, 李毓陵, 陈小光. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019, 40(01): 108-113.
[10] 郭淑华 王建坤 钱晓明. 微波辅助羧甲基玉米淀粉的制备及其上浆性能[J]. 纺织学报, 2018, 39(12): 59-66.
[11] 张朝辉 徐珍珍 李伟. 季铵阳离子醚化-十二烯基琥珀酸酯化淀粉浆料的黏附性能[J]. 纺织学报, 2018, 39(12): 67-71.
[12] 张朝辉 徐珍珍 徐文正 李伟. 季铵阳离子型接枝淀粉浆料的浆膜性能[J]. 纺织学报, 2018, 39(11): 68-72.
[13] 李伟 刘新华 徐珍珍 李长龙 王旭 魏安方 张朝辉. 电中性双重醚化淀粉浆料的制备及其浆膜性能[J]. 纺织学报, 2017, 38(12): 77-82.
[14] 沈艳琴 武海良 熊锐 毛宁涛. 中低温水溶季铵阳离子淀粉浆料的合成及其浆纱性能[J]. 纺织学报, 2017, 38(11): 73-78.
[15] 张朝辉 徐珍珍 刘新华 李伟. 乙酰乙酸酯化淀粉浆料的制备及其性能[J]. 纺织学报, 2017, 38(11): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!