纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 176-182.doi: 10.13475/j.fzxb.20211007907

• 染整与化学品 • 上一篇    下一篇

纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能

金耀峰1,2,3, 刘雷艮1,2, 王薇1,2, 陆鑫1,2,3()   

  1. 1.常熟理工学院 纺织服装与设计学院, 江苏 常熟 215500
    2.江苏省高校新型功能材料重点建设实验室,江苏 常熟 215500
    3.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
  • 收稿日期:2021-10-29 修回日期:2021-12-07 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 陆鑫
  • 作者简介:金耀峰(1996—),男,硕士生。主要研究方向为功能面料的制备及其性能。
  • 基金资助:
    江苏省基础研究计划项目(BK20181038)

Preparation and UV shielding of rutile nano-TiO2 by induction of nanocrystal-cellulose at room temperature

JIN Yaofeng1,2,3, LIU Leigen1,2, WANG Wei1,2, LU Xin1,2,3()   

  1. 1. College of Textile and Garment Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    2. Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu, Jiangsu 215500, China
    3. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2021-10-29 Revised:2021-12-07 Published:2022-02-15 Online:2022-03-15
  • Contact: LU Xin

摘要:

为制备具有优异紫外线防护性能的纳米纤维,采用四氯化钛为钛源,纳米纤维素(NCC)为模板,在室温条件下诱导制备了屏蔽紫外线用金红石型纳米二氧化钛。并研究了反应温度、反应时间和四氯化钛的使用量对金红石型纳米TiO2质量分数的影响。通过设计正交试验优化出纳米二氧化钛最佳的制备条件:反应温度为25 ℃,反应时间为1 h,四氯化钛用量为3 mL,并对其微观结构及屏蔽紫外线性能进行表征。结果表明,纯金红石型纳米TiO2的分散性好,呈“刺球状”,粒径为100~250 nm。通过该纳米二氧化钛整理后的棉织物抗紫外线性能优异,紫外线防护系数大于40,证明此方法制备的金红石型纳米TiO2具有良好的紫外线屏蔽性能。

关键词: 纳米纤维素, 四氯化钛, 纳米二氧化钛, 金红石型, 抗紫外线性能

Abstract:

In order to prepare nanofiber with improved ultraviolet(UV)protection performance, rutile nano-TiO2 for UV shielding was prepared by using TiCl4 as titanium source and nanocrystal-cellulose (NCC) as template at room temperature, and the effects of reaction temperature, reaction time and the dosage of titanium tetrachloride on the mass fraction of rutile nano-TiO2 were studied. Orthogonal experiments were adopted to optimize the preparation conditions of nano-TiO2, where reaction temperature was 25 ℃, reaction time was 1 h and dosage of TiCl4 was 3 mL, and then the microstructure and UV resistance of the nano-TiO2 were characterized. The results showed that the pure rutile nano-TiO2 was well dispersed and has a spiny spherical shape with a particle size of 100-250 nm. The cotton fabric treated with nano-TiO2 offers UV resistance with UPF>40, which is regarded as excellent. The rutile nano-titanium dioxide prepared by this method has good UV shielding performance, indicating that rutile nano-TiO2 prepared by this method has good UV shielding property.

Key words: nanocrystal cellulose, TiCl4, nano-TiO2, rutile, UV resistance

中图分类号: 

  • TS195.5

图1

不同反应温度下样品的XRD图"

表1

不同反应温度下样品中金红石纳米TiO2质量分数"

试验编号 反应温度/℃ 金红石型TiO2质量分数/%
1-1 25 100
1-2 40 73.97
1-3 50 57.47
1-4 60 54.39
1-5 70 0

图2

不同反应时间下样品的XRD图"

表2

不用反应时间下样品中金红石纳米TiO2质量分数"

试验编号 反应时间/h 金红石型TiO2质量分数/%
2-1 0.5 0
2-2 1 43.57
2-3 4 59.72
2-4 7 100
2-5 24 56.06

图3

不同TiCl4用量下样品的XRD图"

表3

不同TiCl4用量下样品中金红石纳米TiO2的含量"

试验编号 TiCl4用量/mL 金红石型TiO2含量/%
3-1 0.5 43.35
3-2 1 55.21
3-3 2 66.90
3-4 3 100
3-5 4 100

表4

正交试验与结果"

试验
编号
A
反应温
度/℃
B
反应时
间/h
C
TiCl4
量/mL
金红石型
的含量/%
1 25 1 1 73.31
2 25 4 2 100
3 25 7 3 100
4 50 1 2 100
5 50 4 3 100
6 50 7 1 56.74
7 70 1 3 65.56
8 70 4 1 0
9 70 7 2 48.35
K1j 273.31 238.87 130.05
K2j 256.74 200 248.35
K3j 113.91 205.09 265.56
-K1j 91.10 79.62 43.35
-K2j 85.58 66.67 82.78
-K3j 37.97 68.36 88.52
主次顺序 A>C>B
最优水平 A1 B1 C3
最优组合 A1B1C3

图4

最佳工艺条件和不同反应条件下金红石纳米TiO2的XRD图"

图5

样品的形貌图"

图6

样品的粒径分布图"

图7

金红石纳米TiO2的TG和DTG曲线"

图8

金红石纳米TiO2的XPS图谱"

表5

金红石纳米TiO2的紫外线屏蔽性能"

样品 紫外线透过率/% UPF
T(UVA) T(UVB)
平纹机织棉织物 15.81 9.80 9.19
纬平针棉织物 18.34 10.24 8.34
处理后平纹机织棉织物 3.28 1.61 56.53
处理后纬平针棉织物 4.40 1.82 49.78
[1] 吴健春. 金红石纳米二氧化钛在涂料中的应用[J]. 钢铁钒钛, 2021, 42(1): 43-49.
WU Jianchun. Application of rutile nano titanium dioxide in coatings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 43-49.
[2] TAREK M A E, BASANT A M. ZnO and TiO2 nanoparticles as textile Protecting agents against UV radiation: a review[J]. Asian Journal of Chemical Sciences, 2018, 4(1): 1-14.
[3] ATHIR N, SHAH S A A, SHEHZAD F K, et al. Rutile TiO2 integrated zwitterion polyurethane composite films as an efficient photostable food packaging material[J]. Reactive & Functional Polymers, 2020, 157:104733.
[4] LI Y Y, LIU J P, JIA Z J. Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process[J]. Materials Letters, 2006, 60(13/14): 1753-1757.
doi: 10.1016/j.matlet.2005.12.012
[5] 周忠诚, 阮建明, 邹俭鹏 等. 四氯化钛低温水解直接制备金红石型纳米二氧化钛[J]. 稀有金属, 2006(5): 653-656.
ZHOU Zhongcheng, RUAN Jianming, ZOU Jianpeng, et al. Direct preparation of rutile nano titanium dioxide by low temperature hydrolysis of titanium tetrach-loride[J]. Chinese Journal of Raremetals, 2006(5): 653-656.
[6] GUO D L, ZHANG J M, SHA L ZG, et al. Preparation and characterization of lignin-TiO2 UV shielding composite material by induced synjournal with nanofibrillated cellulose[J]. Bioresources, 2020, 15(4): 7374-7389.
doi: 10.15376/biores
[7] PENG, X Y, DING E Y. Low-temperature synjournal of flower-like TiO2 nanocrystals[J]. Micro & Nano Letters, 2011, 6(12): 998-1001.
doi: 10.1049/mnl.2011.0569
[8] ZHOU Y, DING E Y, LI W D. Synjournal of TiO2nanocubes induced by cellulose nanocrystal (CNC) at low temperature[J]. Materials Letters, 2007, 61(28): 5050-5052.
doi: 10.1016/j.matlet.2007.04.001
[9] BONDESON D, MATHEW A, OKSMAN K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
doi: 10.1007/s10570-006-9061-4
[10] KUMAR K N P. POROUS nanocomposites as catalyst supports: part I: second phase stabilization, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites[J]. Applied Catalysis A: General, 1994, 119(1): 163-183.
doi: 10.1016/0926-860X(94)85032-1
[11] SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Analytical Chemistry. 1957, 29(5): 760-762.
doi: 10.1021/ac60125a006
[12] ARULARASU M V, HARB M, SUNDARAM R. Synjournal and characterization of cellulose/TiO2 nanocomposite: evaluation of in vitro antibacterial and in silico molecular docking studies[J]. Carbohydrate Polymers, 2020, 249.
[13] HABIBI S and JAMSHIDI M. Sol-gel synjournal of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light[J]. Environmental Technology, 2020, 41(24): 3233-3247.
doi: 10.1080/09593330.2019.1604815
[14] ZHAO J Z, WAN Z C, WANG L W, et al. Effect of nuclei on the formation of rutile titania[J]. Journal of Materials Science Letters, 1998, 17(22): 1867-1869.
doi: 10.1023/A:1006654916720
[15] SANTOS J G, OGASAWARA T, CORREA R A. Synjournal of nanocrystalline rutile-phase titania at low temperatures[J]. Materials Science Poland, 2009, 27(4): 1067-1076.
[16] NAVROTSKY A, KLEPPA, O J. Enthalpy of the Anatase-Rutile Transformation[J]. Journal of the American Ceramic Society, 1967, 50(11): 626.
doi: 10.1111/jace.1967.50.issue-11
[17] CHEN H M, MA J M, ZHAO Z G, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles[J]. Chemistry of Materials, 1995, 7(4): 663-671.
doi: 10.1021/cm00052a010
[1] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[2] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[3] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[4] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[5] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[6] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[7] 李瑞雪 沈小林 张兴亚 肖杏芳 江珊 尹维维. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016, 37(3): 78-81.
[8] 杨平 霍瑞亭. 基于复凝聚法的纳米TiO2微胶囊制备[J]. 纺织学报, 2013, 34(4): 94-97.
[9] 梁慧 张光先 张凤秀 吴大洋. 紫外线−纳米二氧化钛改性高亲水涤纶织物的制备[J]. 纺织学报, 2013, 34(3): 82-86.
[10] 钱红飞. 茶多酚在蚕丝染色中的应用与抗紫外线性能[J]. 纺织学报, 2012, 33(2): 68-72.
[11] 杨璐 张辉. 水热法制备纳米TiO2 改性锦纶织物[J]. 纺织学报, 2011, 32(11): 83-89.
[12] 陈海珍. 纳米二氧化钛对聚酯纤维结晶性能的影响[J]. 纺织学报, 2010, 31(4): 25-29.
[13] 侯大寅;汤辉. 纳米AZO膜的制备及其光电性能[J]. 纺织学报, 2009, 30(10): 75-79.
[14] 徐阳;邵东锋;魏取福;朱贺;张靖. 沉积纳米TiO2织物的表征及其光学透射性能[J]. 纺织学报, 2009, 30(08): 59-63.
[15] 林鹤鸣;吕娜娜;戚栋明;吴明华. PBA/TiO2接枝复合整理剂及其整理棉织物的抗紫外线性能[J]. 纺织学报, 2009, 30(04): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1 -6 .
[4] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[5] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[6] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[7] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[8] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[9] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[10] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .