纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 124-132.doi: 10.13475/j.fzxb.20210506109

• 服装工程 • 上一篇    下一篇

单层服装间隙量的动态有限元模型构建与仿真

余玉坤1, 孙玥1,2,3, 侯珏1,2,3, 刘正1,2,3(), 易洁伦4   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.服装数字化技术浙江省工程实验室, 浙江 杭州 310018
    4.香港理工大学 纺织及服装学系, 香港 999077
  • 收稿日期:2021-05-24 修回日期:2022-01-07 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 刘正
  • 作者简介:余玉坤(1997— ),女,硕士生。主要研究方向为服装数字化技术。
  • 基金资助:
    丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室资助项目(11310031252005)

Dynamic finite element modeling and simulation of single layer clothing ease allowance

YU Yukun1, SUN Yue1,2,3, HOU Jue1,2,3, LIU Zheng1,2,3(), YICK Kitlun4   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Apparel Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology, Hangzhou, Zhejiang 310018, China
    4. Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2021-05-24 Revised:2022-01-07 Published:2022-04-15 Online:2022-04-20
  • Contact: LIU Zheng

摘要:

为探究运动状态下服装间隙量的变化情况,提出一种基于有限元软件构建的单层服装间隙量的动态仿真模型,模拟步行时的力学状态与间隙量。首先,基于三维点云数据构建人体与服装的不同组织结构形态的三维模型,利用Instron万能拉伸仪与三维动作捕捉系统获取服装材料参数与人体运动坐标,建立人体单层服装间隙量有限元模型,利用有限元仿真软件进行动态仿真模拟,最后将仿真模拟得到的间隙量与真实运动状态下的间隙量进行对比验证。结果表明:建立的有限元模型可精确描述服装动态间隙量变化,且模拟结果与实验结果的最小平均误差值为0.24 mm,最小相对均方根误差为1.81 mm;对同一运动周期6个时间段下2组数据进行相关性分析,仿真坐标值与真实坐标值在0.01水平(双尾)显著相关,证明了动态有限元仿真的准确性。

关键词: 服装间隙量, 有限元分析, 数值模拟, 三维建模, 动态仿真

Abstract:

In order to investigate the dynamic change of ease allowance of clothing during motion, a dynamic simulation model for single layer clothing ease allowance using finite element method was proposed, simulating the mechanical state and clothing ease allowance generation mechanism. Based on the three-dimensional (3-D) point cloud data, 3-D sub-models of human body and clothing were constructed. Instron universal extensometer and 3-D motion capture system were used to measure the physical properties of clothing and the coordinates of human trunk during dynamic motion, then a finite element model of a single layer clothing ease allowance was established. The finite element simulation software was used for dynamic simulation, finally, the ease allowance obtained by simulation is compared and verified with the ease allowance in real motion state. The results show that the minimum average difference between the simulation and experiment is 0.24 mm, and the minimum relative mean square error is 1.81 mm.The simulation coordinate value is significantly correlated with that in experiment at the level of 0.01 (two tails). It indicated that the simulation results can accurately predict the dynamic garment ease allowance around the chest during motion.

Key words: clothing ease allowance, finite element analysis, numerical simulation, three-dimensional modeling, dynamic simulation

中图分类号: 

  • K826.16

图1

人体-服装接触坐标系"

图2

人体-服装三维模型建模流程"

表1

有限元模型材料参数"

结构 材料属性 密度/
(kg·m-3)
材料参数
C10/
kPa
C01/
kPa
C11/
kPa
C20/
kPa
C02/
kPa
弹性模
量/kPa
泊松比
乳房 Mooney-Rivlin 1.00×103 0.25 0.26 1.87 3.90 3.40
外部软组织 各向同性 1.00×103 150.00 0.30
服装 各向同性 1.43×103 0.20 0.19

图3

三维动作捕捉仪测试示意图"

图4

人体与服装有限元模型"

表2

人体与服装接触类型表"

接触体名称 接触体类型 服装 乳房 外部软组织 躯干
服装 变形体 T T
乳房 变形体 T G G
外部软组织 变形体 T G G
躯干 刚体

图5

有限元模拟中的边界条件"

图6

不同时间下着装状态的位移云图"

图7

不同时间时净体的位移云图"

图8

不同时间点间隙量仿真数值"

图9

人体胸围截面主要部位运动趋势验证"

图10

服装胸围截面主要部位运动趋势验证"

表3

间隙量相关性分析"

相关性系数 T1 T2 T3 T4 T5 T6
皮尔逊相关系数 0.830 0.706 0.722 0.733 0.411 0.828
显著性(双尾)系数 0.001 0.010 0.008 0.007 0.185 0.001
[1] 徐继红, 张文斌. 人体与服装特征曲面间距离松量的影响因子[J]. 纺织学报, 2009, 30(5):104-108.
XU Jihong, ZHANG Wenbin. Influential factors of distance ease on typical cross sections[J]. Journal of Textile Research, 2009, 30(5): 104-108.
[2] 张爱萍, 王云仪, 姚怡. 服装胸围截面上距离松量的分配关系[J]. 纺织学报, 2012, 33(6):76-80.
ZHANG Aiping, WANG Yunyi, YAO Yi. Study on relationships between garment's distance ease distributions at bust section[J]. Journal of Textile Research, 2012, 33(6):76-80.
[3] 胡紫婷, 郑晓慧, 冯铭铭, 等. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11):145-150,160.
HU Ziting, ZHENG Xiaohui, FENG Mingming, et al. Influence of air gap on thermal and moisture properties of permeable protective clothing[J]. Journal of Textile Research, 2019, 40(11):145-150,160.
[4] LIU Zheng, HE Qin, ZOU Fengyuan, et al. Apparel ease distribution analysis using three-dimensional motion capture[J]. Textile Research Journal, 2019, 89(19/20): 4323-4335.
doi: 10.1177/0040517519832842
[5] WANG Shitan, WANG Xiuhua, WANG Yunyi. Effects of clothing ease and body postures on the air gap and clothing coverage[J]. International Journal of Clothing Science and Technology, 2019, 31(4): 578-594.
doi: 10.1108/IJCST-12-2018-0158
[6] LI Jituo, YE Juntao, WANG Yangsheng, et al. Fitting 3D garment models onto individual human models[J]. Computers & Graphics, 2010, 34(6): 742-755.
doi: 10.1016/j.cag.2010.07.008
[7] THOMASSEY S, BRUNIAUX P. A template of ease allowance for garments based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013, 43(5): 406-416.
doi: 10.1016/j.ergon.2013.08.002
[8] LIU Hong. A study of the relationship between clothing pressure and garment bust strain, and Young's modulus of fabric, based on a finite element model[J]. Textile Research Journal, 2011, 81(13): 1307-1319.
doi: 10.1177/0040517510399961
[9] SUN Yue, CHEN Lihua, YICK Kitlun, et al. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 615-625.
doi: S1751-6161(18)30500-9 pmid: 30500699
[10] SUN Yue, YICK Kitlun, YU Winnie, et al. 3D bra and human interactive modeling using finite element method for bra design[J]. Computer-Aided Design, 2019, 114: 13-27.
doi: 10.1016/j.cad.2019.04.006
[11] LIN Yinglei. Finite element modeling of male leg and sportswear: contact pressure and clothing deformation[J]. Textile Research Journal, 2011, 81(14): 1470-1476.
doi: 10.1177/0040517510395997
[12] YEUNG K W, LI Y, ZHANG X. A 3D biomechanical human model for numerical simulation of garment-body dynamic mechanical interactions during wear[J]. Journal of The Textile Institute, 2004, 95(1-6): 59-79.
doi: 10.1533/joti.2001.0050
[13] ZHANG X. Numerical simulation of 3D dynamic garment pressure[J]. Textile Research Journal, 2002, 72(3): 245-252.
doi: 10.1177/004051750207200311
[14] MCLEAN A Robb, RICHARDS Michael E, CRANDALL Cameron S, et al. Ultrasound determination of chest wall thickness: implications for needle thoracostomy[J]. The American Journal of Emergency Medicine, 2011, 29(9): 1173-1177.
doi: 10.1016/j.ajem.2010.06.030
[15] 卢天健, 徐峰. 皮肤的力学性能概述[J]. 力学进展, 2008(4):393-426.
LU Tianjian, XU Feng. Mechanical properties of skin[J]. Advances in Machanics, 2008(4):393-426.
[16] SANNYAL Mridul, MUKADDES Abul Mukid Mohammad, RAHMAN Md Matiar, et al. Analysis of the effect of external heating in the human tissue: a finite element approach[J]. Polish Journal of Medical Physics and Engineering, 2020, 26(4): 251-262.
doi: 10.2478/pjmpe-2020-0030
[17] 应欣, 程碧莲, 刘正, 等. 体表形态凸角对腰围间隙量的影响[J]. 纺织学报, 2019, 40(10):152-157.
YING Xin, CHENG Bilian, LIU Zheng, et al. Influence of body surface convex angle on waist section ease[J]. Journal of Textile Research, 2019, 40(10):152-157.
[18] RUI Dan. Numerical simulation of the relationship between pressure and displacement for the top part of men's socks[J]. Textile Research Journal, 2011, 81(2): 128-136.
doi: 10.1177/0040517510377830
[19] PASQUALE Franciosa, SALVATORE Gerbino, ANTONIO Lanzotti, et al. Improving comfort of shoe sole through experiments based on CAD-FEM modeling[J]. Medical Engineering & Physics, 2013, 35(1): 36-46.
doi: 10.1016/j.medengphy.2012.03.007
[20] 康雪莲, 应柏安, 张欣, 等. 接触状态下男上装基础版型对人体压力分布的有限元模型[J]. 纺织学报, 2018, 39(11):116-121.
KANG Xuelian, YING Boan, ZHANG Xin, et al. Finite element model for evaluating pressure distribution of men's basic pattern on upper body[J]. Journal of Textile Research, 2018, 39(11):116-121.
[21] WANG Z, NEWTON E, NG R, et al. Ease distribution in relation to the X-line style jacket: part 1: development of a mathematical model[J]. Journal of The Textile Institute, 2006, 97(3):247-256.
doi: 10.1533/joti.2005.0239
[22] 李涛, 杜磊, 孙洁, 等. 短裤特征截面廓形分析及间隙量预测模型构建[J]. 纺织学报, 2019, 40(5):113-118.
LI Tao, DU Lei, SUN Jie, et al. Typical cross section silhouette analysis and interval prediction model construction of shorts[J]. Journal of Textile Research, 2019, 40(5):113-118.
[23] 徐继红, 张文斌, 夏明. 人体与服装特征曲面间廓体松量分配关系[J]. 天津工业大学学报, 2009, 28(5):27-32.
XU Jihong, ZHANG Wenbin, XIA Ming. Vacant ease distribution relationship between body and garment[J]. Journal of Tiangong University, 2009, 28(5):27-32.
[1] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[2] 王迪, 柯莹, 王宏付. Voronoi图形在参数化服装造型构建中的应用[J]. 纺织学报, 2021, 42(12): 131-137.
[3] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[4] 梁灼, 贾国欣, 任家智, 李金键. 棉纺精梳机钳板的变形及其应力分析[J]. 纺织学报, 2021, 42(12): 145-150.
[5] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[6] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[7] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[8] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[9] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[10] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[11] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[12] 吕常亮, 郝志远, 陈慧敏, 张慧乐, 岳晓丽. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(03): 21-26.
[13] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[14] 王婷, 顾冰菲. 基于图像的人体颈肩部三维模型构建[J]. 纺织学报, 2021, 42(01): 125-132.
[15] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!