纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 214-221.doi: 10.13475/j.fzxb.20220807408
庞明科1,2,3, 王淑花1,3(
), 史晟1,2,3, 薛立钟1,3, 郭红1,3, 高承永1,3, 卢建军1,3, 赵晓婉1,3, 王子涵1,3
PANG Mingke1,2,3, WANG Shuhua1,3(
), SHI Sheng1,2,3, XUE Lizhong1,3, GUO Hong1,3, GAO Chengyong1,3, LU Jianjun1,3, ZHAO Xiaowan1,3, WANG Zihan1,3
摘要:
为解决废旧聚对苯二甲酸乙二醇酯(PET)纺织品日益增多,造成巨大的能源和资源浪费问题,采用醇解法对PET纤维进行解聚,优化其解聚工艺;并以醇解产物为原料合成磷硅协同阻燃改性水性聚氨酯,探究了异佛尔酮二异氰酸酯中NCO基团与对苯二甲酸双羟乙酯中OH基团的量比(n(NCO)/n(OH))、阻燃剂三羟甲基氧膦(THPO)和二氧化硅(SiO2)质量分数对阻燃改性水性聚氨酯形态和稳定性的影响;然后将得到的阻燃改性水性聚氨酯通过后整理的方法改性PET织物,并表征其阻燃性能。结果表明:在乙二醇(EG)为解聚剂,酯酸锌和氯化胆碱为催化剂的条件下,最佳解聚工艺为EG与PET质量比为 4∶1、 氯化胆碱与酯酸锌量比为1∶1、反应温度为185 ℃、 反应时间为4 h,解聚产物对苯二甲酸双羟乙酯的产率可达87.6%;当THPO质量分数小于24%,SiO2质量分数小于6%,n(NCO)/n(OH)在3~7时,阻燃改性水性聚氨酯呈均匀稳定的乳液形态;当THPO质量分数为24%,SiO2质量分数为4%,n(NCO)/n(OH)为6时,阻燃改性PET织物具有较高的阻燃性能,残炭率可达13.9%(比原PET织物的残炭率提高127%),极限氧指数最高达 29.7%,垂直燃烧测试达V-0级。
中图分类号:
| [1] |
RORRER N A, NICHOLSON S, CARPENTER A, et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling[J]. Joule, 2019, 3(4): 1006-1027.
doi: 10.1016/j.joule.2019.01.018 |
| [2] |
NIKLES D E, FARAHAT M S. New motivation for the depolymerization products derived from poly (ethylene terephthalate)(PET) waste: a review[J]. Macromolecular Materials and Engineering, 2005, 290(1): 13-30.
doi: 10.1002/(ISSN)1439-2054 |
| [3] |
DUTT K, SONI R K. A review on synthesis of value added products from polyethylene terephthalate (PET) waste[J]. Polymer Science Series B, 2013, 55(7): 430-452.
doi: 10.1134/S1560090413070075 |
| [4] |
GEYER B, LORENZ G, KANDELBAUER A. Recycling of poly (ethylene terephthalate): a review focusing on chemical methods[J]. Express Polymer Letters, 2016, 10(7): 559-586.
doi: 10.3144/expresspolymlett.2016.53 |
| [5] |
DISSANAYAKE L, JAYAKODY L. Engineering microbes to bio-upcycle polyethylene terephthalate[J]. Frontiers in Bioengineering and Biotechnology, 2021.DOI:10.3389/fbioe.2021.656465.
doi: 10.3389/fbioe.2021.656465 |
| [6] |
SHETH J P, ANEJA A, WILKES G L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective[J]. Polymer, 2004, 45(20): 6919-6932.
doi: 10.1016/j.polymer.2004.06.057 |
| [7] |
SHAN X, LIU L, WU Y, et al. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable reestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science, 2022.DOI: 10.1002/advs.202201190.
doi: 10.1002/advs.202201190 |
| [8] |
CAI J, MURUGADOSS V, JIANG J, et al. Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications[J]. Advanced Composites and Hybrid Materials, 2022, 5(2):641-650.
doi: 10.1007/s42114-022-00473-8 |
| [9] | 李敏, 韩龙, 郭旭虹, 等. 有机硅改性水性聚氨酯涂层的制备及其防污性能[J]. 功能高分子学报, 2021, 34(4): 379-386. |
| LI Min, HAN Long, GUO Xuhong, et al. Preparation of silicone modified waterborne polyurethane coating and its antifouling performance[J]. Journal of Functional Polymers, 2021, 34(4): 379-386. | |
| [10] | 王少博. PET 聚酯的乙二醇解聚与再生共聚研究[D]. 上海: 东华大学, 2016:7-35. |
| WANG Shaobo. Study of glycol depolymerization and regenerative copolymerization of PET polymers[D]. Shanghai: Donghua University, 2016:7-35. | |
| [11] | 陈永军, 卿宁, 赵燕, 等. 纳米二氧化硅改性水性聚氨酯分散液的制备与表征[J]. 涂料工业, 2014, 44(1): 40-45. |
| CHEN Yongjun, QING Ning, ZHAO Yan, et al. Preparation and characterization of nano-silica modified aqueous polyurethane dispersions[J]. Coating Industry, 2014, 44(1): 40-45. | |
| [12] |
WANG S, DU X S, JIANG Y X, et al. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant[J]. Colloid and Interface Science, 2019, 537: 197-205.
doi: 10.1016/j.jcis.2018.11.003 |
| [13] | 李国屏. 磷系阻燃剂及其阻燃涤纶的研制[J]. 上海化工, 1995, 20(5): 5-39. |
| LI Guoping. Development of phosphorus-based flame retardants and their flame retardant polyester[J]. Shanghai Chemical Industry, 1995, 20(5): 5-39. | |
| [14] | 张云波, 张珍竹, 罗耀发, 等. 气相二氧化硅改性水性聚氨酯涂层剂的制备及性能研究[J]. 纺织导报, 2013 (8): 66-68. |
| ZHANG Yunbo, ZHANG Zhenzhu, LUO Yaofa, et al. Preparation and property study of fumed silica-containing aqueous polyurethane coating agent[J]. China Textile Leader, 2013(8): 66-68. |
| [1] | 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54. |
| [2] | 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103. |
| [3] | 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188. |
| [4] | 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185. |
| [5] | 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112. |
| [6] | 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48. |
| [7] | 李艳艳, 李梦娟, 葛明桥. 有色废弃聚酯的脱色与再利用研究进展[J]. 纺织学报, 2021, 42(08): 17-23. |
| [8] | 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40. |
| [9] | 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131. |
| [10] | 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135. |
| [11] | 曾玉晖, 张亭亭, 王克作, 何力, 陈益人. 天然彩棉后整理加工中颜色稳定性的影响因素[J]. 纺织学报, 2020, 41(08): 45-49. |
| [12] | 陈欣, 张家琳, 王纪冬, 李晓强, 葛明桥. 电絮凝技术在废弃涤纶醇解液脱色中的应用[J]. 纺织学报, 2019, 40(10): 98-104. |
| [13] | 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(08): 181-188. |
| [14] | 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89. |
| [15] | 李艳艳, 李梦娟, 鲁静, 葛明桥. 废弃聚酯醇解液的回收与循环利用[J]. 纺织学报, 2019, 40(02): 14-19. |
|