纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 44-54.doi: 10.13475/j.fzxb.20220704611

• 纤维材料 • 上一篇    下一篇

聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能

廖云珍1,2, 朱亚楠1,2(), 葛明桥1,2, 孙同明3, 张欣宇3   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学),江苏 无锡 214122
    3.国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2022-07-14 修回日期:2022-11-12 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 朱亚楠(1987—),男,副教授,博士。研究方向为功能性纤维制造理论与技术。E-mail:zhuyanan@jiangnan.edu.cn。
  • 作者简介:廖云珍(1998—),女,硕士生。主要研究方向为废弃纤维降解及资源化利用。
  • 基金资助:
    国家先进印染技术创新中心科研基金项目(2022GCJJ20)

Alcoholysis and product recovery properties of polyethylene terephthalate/ SrAl2O4:Eu2+, Dy3+ hybrid fibers

LIAO Yunzhen1,2, ZHU Ya'nan1,2(), GE Mingqiao1,2, SUN Tongming3, ZHANG Xinyu3   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. National Innovation Center of Advanced Dyeing & Finishing Technology, Taian, Shandong 271000, China
  • Received:2022-07-14 Revised:2022-11-12 Published:2023-02-15 Online:2023-03-07

摘要:

为提高废弃含杂纤维的回收率,以废弃的聚对苯二甲酸乙二醇酯基含杂纤维(PET/SrAl2O4:Eu2+,Dy3+)为研究对象,采用乙二醇醇解联合热乙醇的方法,探究含杂纤维的醇解性能并回收发光材料SrAl2O4:Eu2+,Dy3+及PET醇解产物对苯二甲酸双羟乙酯。通过改变乙二醇用量、反应温度及反应时间探讨乙二醇醇解条件对产物性能的影响,借助扫描电子显微镜、X射线衍射仪、差示扫描量热仪、分光光度测色仪、长余辉亮度仪等对醇解产物的微观形貌、物相结构、热稳定性能、余辉性能等进行测试与表征。结果表明:乙二醇用量、反应温度、反应时间和催化剂用量均不会改变发光材料SrAl2O4:Eu2+,Dy3+的物相结构;当反应温度为190 ℃,反应时间为180 min时,含杂纤维的醇解率达到100%,此时SrAl2O4:Eu2+,Dy3+的回收率为93%,初始亮度为3.906 cd/m2, 对苯二甲酸双羟乙酯的回收率为82%。

关键词: 聚对苯二甲酸乙二醇酯, 含杂纤维, 醇解, 产物回收, 发光材料, 功能材料

Abstract:

Objective At present, the functional fibers containing various impurities are treated by landfill or incineration, which will not only affect the environment, but also cause the waste of functional materials. Some efforts have been made to recover waste luminescent fibers(polyethylene terephthalate(PET)/SrAl2O4:Eu2+,Dy3+), but the luminescent materials mixed in them are significantly affected by the violent reaction process. How to use a gentle way to complete the reaction and at the same time to ensure the consistency of functional materials is now the problem to be solved.
Method The waste PET/SrAl2O4:Eu2+,Dy3+ was used as the research object through combining ethylene glycol with hot ethanol, in order to recover the luminescent material SrAl2O4:Eu2+,Dy3+ and the alcoholysis product of PET. Different dosage of ethylene glycol were used to study the influence on the reaction temperature and reaction time of products, with the aid of scanning electron microscope, X-ray diffractometer, differential scanning calorimeter instrument, spectrophotometric color measurement instrument, the long afterglow brightness meter to analyze the microscopic morphology, phase structure, thermal stability, persistence, performance testing and characterization.
Results Both reaction temperature and reaction time had significant effects on the rate of alcoholysis and product recovery of PET/SrAl2O4:Eu2+,Dy3+. Under the condition where reaction time was 180 min and the reaction temperature was 190 ℃, the alcoholysis efficiency of PET/SrAl2O4:Eu2+,Dy3+ reached 100% and the recovery rate of the alcoholysis product reached 82%. However, the luminescence of SrAl2O4:Eu2+,Dy3+ was found seriously damaged under the same condition. At 180 ℃ and 180 min, the alcoholysis efficiency of PET/SrAl2O4:Eu2+,Dy3+ was 100%, and the recovery rate of the alcoholysis product was lower than that at 190 ℃, but the luminescence performance of SrAl2O4:Eu2+,Dy3+ was significantly improved. It is also discovered that the appropriate amount of ethylene glycol was able to promote the alcoholysis reaction, and the excessive amount of ethylene glycol can also inhibit the alcoholysis of PET/SrAl2O4:Eu2+,Dy3+. The investigation indicated that ethylene glycol and hot ethanol washing would not change the luminescence performance of the SrAl2O4:Eu2+,Dy3+, and the alcoholysis product was bis-hydroxyethyl terephthalate with high purity. Through the analysis of experimental data, it was found that ethylene glycol combined with hot ethanol is able to reduce the reaction time and reaction temperature required for the alcoholysis reaction, and improves the luminescence performance of the recovered SrAl2O4:Eu2+,Dy3+ and the recovery rate of the alcoholysis products.
Conclusion This research took waste PET/SrAl2O4:Eu2+,Dy3+ as the research object, ethylene glycol, hot ethanol and zinc acetate as raw materials, to optimize the alcoholics process for effective recovery of luminescent materials SrAl2O4:Eu2+,Dy3+ and PET alcoholysis products, and the performance of the recovery products were studied. The results provide a theoretical basis for the green recycling of waste mixed fibers and the recovery of functional materials.

Key words: polyethylene terephthalate, hybrid fiber, alcoholysis, product recovery, luminescent material, functional material

中图分类号: 

  • TQ342.21

图1

实验流程图"

图2

不同实验条件下PET醇解产物与BHET的红外光谱图"

图3

PET醇解产物的1H NMR谱图"

图4

PET醇解产物的TG及DSC曲线"

图5

SrAl2O4:Eu2+,Dy3+的XRD曲线"

图6

SrAl2O4:Eu2+, Dy3+的发射和激发曲线"

图7

不同实验条件下SrAl2O4:Eu2+,Dy3+的扫描电镜照片"

图8

SrAl2O4:Eu2+,Dy3+的余辉亮度衰减曲线"

图9

SrAl2O4:Eu2+,Dy3+的CIE色度图及实际光色图"

图10

反应条件对PET醇解率、BHET及SrAl2O4:Eu2+,Dy3+回收率的影响"

图11

PET醇解反应机制图"

[1] DAMAYANTI Damayanti, et al. WULANDARI Latasya Adelia, BAGASKORO Adhano,Possibility routes for textile recycling technology[J]. Polymers, 2021. DOI:10.3390/polym13213834.
doi: 10.3390/polym13213834
[2] ZOU Yi, REDDY Narendra, YANG Yiqi. Reusing polyester/cotton blend fabrics for composites[J]. Composites Part B: Engineering, 2011, 42(4): 763-770.
doi: 10.1016/j.compositesb.2011.01.022
[3] 郑敏博, 张纯芳, 刘定会. 差异化多组分纤维混纺股线的生产[J]. 棉纺织技术, 2015, 43(11): 60-64.
ZHENG Minbo, ZHANG Chunfang, LIU Dinghui. Production of differentiated multi-component fiber blended yarn[J]. Cotton Textile Technology, 2015, 43(11): 60-64.
[4] SHI Qiuwei, SUN Jianqi, HOU Chengyi, et al. Advanced functional fiber and smart textile[J]. Advanced Fiber Materials, 2019, 1(1): 3-31.
doi: 10.1007/s42765-019-0002-z
[5] VÁZQUEZ Katherine, VANEGAS Paul, CRUZAT Christian, et al. Antibacterial and antifungal properties of electrospun recycled PET polymeric fibers functionalized with zinc oxide nanoparticles[J]. Polymers, 2021. DOI:10.3390/polym13213763.
doi: 10.3390/polym13213763
[6] WANG Wencai, CHENG Wenjian, TIAN Ming, et al. Preparation of PET/Ag hybrid fibers via a biomimetic surface functionalization method[J]. Electrochimica Acta, 2012, 79: 37-45.
doi: 10.1016/j.electacta.2012.06.063
[7] ZHAO Yi, CHEN Ranan, NI Ruiyan, er al. Fabrication and characterization of a novel facial mask substrates based on thermoplastic polyester elastomer fibers[J]. Journal of The Textile Institute, 2020, 111(8): 1231-1237.
doi: 10.1080/00405000.2019.1702612
[8] COSIMBESCU Lelia, MERKEL Daniel R, DARSELL Jens, et al. Simple but tricky: investigations of terephthalic acid purity obtained from mixed PET waste[J]. Industrial & Engineering Chemistry Research, 2021, 60(35): 12792-12797.
doi: 10.1021/acs.iecr.1c02604
[9] ASAKUMA Yusuke, YAMAMURA Yusuke, NAKAGAWA Kyuya, et al. Mechanism of depolymerization reaction of polyethylene terephthalate: experimental and theoretical studies[J]. Journal of Polymers and the Environment, 2011, 19(1): 209-216.
doi: 10.1007/s10924-010-0263-3
[10] WEI Ren, HAUGWITZ Gerlis V, PFAFF Llara, et al. Mechanism-based design of efficient PET hydro-lases[J]. ACS Catalysis, 2022, 12(6): 3382-3396.
doi: 10.1021/acscatal.1c05856 pmid: 35368328
[11] KIM Donghyun, HAN Dongoh, SHIM Kyuin, et al. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine[J]. ACS Catalysis, 2021, 11(7): 3996-4008.
doi: 10.1021/acscatal.0c04014
[12] 孙颖颖. 一步法废旧涤/棉纺织品组分分离技术及其纤维素应用研究[D]. 天津: 天津工业大学, 2021:16-22.
SUN Yingying. Study on one-step separation technology of waste polyester/cotton fabric and its cellulose application[D]. Tianjin: Tiangong University, 2021:16-22.
[13] 吴慧萍. 废旧涤/棉织物低损伤开纤技术与应用研究[D]. 无锡: 江南大学, 2021:4-5.
WU Huiping. Research on technology and application of low damage open fiber of waste polyester/cotton fabric[D]. Wuxi: Jiangnan University, 2021:4-5.
[14] 朱聪旭, 徐辉, 杨圆明, 等. SrAl2O4:Eu2+, Dy3+长余辉荧光材料的原位还原制备及其性能研究[J]. 硅酸盐通报, 2017, 36(11): 3648-3652.
ZHU Congxu, XU Hui, YANG Yuanming, et al. In-situ reduction preparation and properties of SrAl2O4:Eu2+, Dy3+ long afterglow fluorescent materials[J]. Silicate Bulletin, 2017, 36(11): 3648-3652.
[15] GUAN Zhipeng, DUAN Yangyinyi, LI Xiangping, et al. Up-conversion luminescence properties and temperature sensing behavior of Nd3+/Yb3+/Tm3+ triply doped LaNbO4 phosphors under 808 nm and 980 nm excita-tions[J]. Radiation Physics and Chemistry, 2022. DOI:10.1016/j.radphyschem.2021.109786.
doi: 10.1016/j.radphyschem.2021.109786
[16] SHI Chen, SHEN Xiuyu, ZHU Yanan, et al. Facile synthesis of a color-tunable microcrystal phosphor for anti-counterfe it applications[J]. ACS Omega, 2020, 5(50): 32420-32425.
doi: 10.1021/acsomega.0c04516 pmid: 33376879
[17] 俞沁岑. 夜光涤纶纤维中发光材料的回收及性能研究[D]. 无锡: 江南大学, 2021:22-28.
YU Qincen. Study on recovery and properties of luminescent materials in luminous polyester fiber[D]. Wuxi: Jiangnan University, 2021:22-28.
[18] 史慕杨. 稀土铝酸锶的表面憎水改性及在夜光纤维上的应用[D]. 无锡: 江南大学, 2021:2-3.
SHI Muyang. Surface hydrophobic modification of rare earth strontium aluminate and its application in luminous fiber[D]. Wuxi: Jiangnan University, 2021:2-3.
[19] JIN Sebin, JEONG Jeamin, SON Seongyu, et al. Synthesis of two-dimensional holey MnO2/graphene oxide nanosheets with high catalytic performance for the glycolysis of poly (ethylene terephthalate)[J]. Materials Today Communications, 2021. DOI:10.1016/j.mtcomm. 2020.101857.
doi: 10.1016/j.mtcomm. 2020.101857
[20] IKLADIOUS N E. Recycling of poly (ethylene terephthalate): identification of glycolysis products[J]. Journal of Elastomers and Plastics, 2000, 32(2): 140-151.
doi: 10.1177/009524430003200203
[21] AL-SABAGH A M, YEHIA F Z, EISSA A M F, et al. Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly (ethylene terephthalate)[J]. Polymer Degradation and Stability, 2014, 110: 364-377.
doi: 10.1016/j.polymdegradstab.2014.10.005
[22] KONG Y, HAY J N. The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC[J]. European Polymer Journal, 2003, 39(8): 1721-1727.
doi: 10.1016/S0014-3057(03)00054-5
[23] CHEN Chengho, CHEN Chuhyean, LO Yuwen, et al. Studies of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles: I: influences of glycolysis conditions[J]. Journal of Applied Polymer Science, 2001, 80(7): 943-948.
doi: 10.1002/(ISSN)1097-4628
[24] 闫彦红. 夜光纤维用发光材料与纤维光色性能研究[D]. 无锡: 江南大学, 2014:22-23.
YAN Yanhong. Research on luminescent Materials and optical and color properties of luminescent fiber[D]. Wuxi: Jiangnan University, 2014:22-23.
[25] 沈修宇, 朱亚楠, 葛明桥. SrAl2O4:Eu2+, Dy3+/TPE发光材料的制备及其光学性能[J]. 材料科学与工程学报, 2021, 39(1): 106-110,123.
SHEN Xiuyu, ZHU Yanan, GE Mingqiao. Preparation and optical properties of SrAl2O4:Eu2+, Dy3+/TPE luminescent materials[J]. Journal of Materials Science and Engineering, 2021, 39(1): 106-110,123.
[26] JIN Yang, LONG Xiaoyun, ZHU Yanan, et al. Optical performance study of Sr2ZnSi2O7:Eu2+, Dy3+, SrAl2O4:Eu2+, Dy3+ and Y2O2S:Eu3+, Mg2+, Ti4+ ternary luminous fiber[J]. Journal of Rare Earths, 2016, 34(12): 1206-1212.
doi: 10.1016/S1002-0721(16)60155-2
[27] 史慕杨, 晋阳, 葛明桥. 包覆CaF2对稀土铝酸锶长余辉发光材料耐水性能的影响[J]. 化工新型材料, 2022, 50(1): 131-136.
SHI Muyang, JIN Yang, GE Mingqiao. Effect of CaF2 coating on water resistance of rare earth strontium aluminate long afterglow luminescent materials[J]. New Chemical Materials, 2022, 50(1): 131-136.
[28] ZHANG Haoran, XUE Zhiping, LEI Bingfu, et al. A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors[J]. Optical Materials, 2014, 36(11): 1802-1807.
doi: 10.1016/j.optmat.2014.02.010
[29] 郭雪峰, 刘志香, 葛明桥. 稀土铝酸锶夜光机织物发光亮度的研究[J]. 上海纺织科技, 2013, 41(4):37-38,59.
GUO Xuefeng, LIU Zhixiang, GE Mingqiao. Study on luminescence of rare earth strontium aluminate noctilucent woven fabric[J]. Shanghai Textile Science & Technology, 2013, 41(4):37-38,59.
[30] KHOONKARI Mohammad, HAGHIGHI Amirhossein, SEFIDBAKHT Yahya, et al. Chemical recycling of PET wastes with different catalysts[J]. International Journal of Polymer Science, 2015. DOI:10.1155/2015/124524.
doi: 10.1155/2015/124524
[31] SHOJAEI Behrouz, ABTAHI Mojtaba, NAJAFI Moham. Chemical recycling of PET: a stepping-stone toward sustainability[J]. Polymers for Advanced Technologies, 2020, 31(12): 2912-2938.
doi: 10.1002/pat.v31.12
[32] KOSLOSKI-OH Sophiac, WOOD Zacharya, MANJARRE Z Yvonne, et al. Catalytic methods for chemical recycling or upcycling of commercial poly-mers[J]. Materials Horizons, 2021, 8(4): 1084-1129.
doi: 10.1039/D0MH01286F
[33] GUO Zengwei, LINDQVIST Karin, DELAMOTTE Hanna. An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst[J]. Journal of Applied Polymer Science, 2018. DOI:10.1002/app.46285.
doi: 10.1002/app.46285
[1] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[2] 施翔, 王臻, 彭慧胜. 织物显示器件的研究进展[J]. 纺织学报, 2023, 44(01): 21-29.
[3] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[4] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[5] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[6] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[7] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[8] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
[9] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[10] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[11] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40.
[12] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[13] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[14] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[15] 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[3] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[4] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[5] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[6] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[7] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[8] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[9] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .