纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 104-112.doi: 10.13475/j.fzxb.20211106809

• 染整与化学品 • 上一篇    下一篇

聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用

李宝洁1,2, 朱元昭1,2, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学与化工学院, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2021-11-12 修回日期:2022-07-22 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 毛志平
  • 作者简介:李宝洁(1997—),男,硕士生。主要研究方向为聚合物材料阻燃改性。
  • 基金资助:
    国家重点研发计划项目(2018YFC1801502)

Preparation and application of polyphosphazene modified zeolite imidazolate framework materials for flame retardancy of poly(ethylene terephthalate)

LI Baojie1,2, ZHU Yuanzhao1,2, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-11-12 Revised:2022-07-22 Published:2022-11-15 Online:2022-12-26
  • Contact: MAO Zhiping

摘要:

为提高聚对苯二甲酸乙二醇酯(PET)的阻燃性能,以六水合硝酸锌和2-甲基咪唑制备沸石咪唑酯骨架材料(ZIF-8),之后用六氯环三磷腈和4,4 -二羟基二苯砜对ZIF-8进行表面修饰合成一种ZIF-8聚环三磷睛-共磺酰基双酰/(PZS)亚微米颗粒,并与PET通过熔融共混制备PET阻燃复合材料。借助热重分析仪、极限氧指数仪、垂直燃烧仪、万能材料试验机以及扫描电镜等对复合材料的热稳定性、阻燃抗熔滴性、力学性能以及阻燃机制进行分析。结果表明:添加6%的ZIF-8/PZS亚微米颗粒使PET的极限氧指数(LOI值)提高到29.2%,并通过UL-94 V-0等级,而复合材料的力学性能没有受到严重影响;ZIF-8/PZS可以在气相和凝聚相中同时发挥效用,从而赋予PET复合材料优异的阻燃性能。

关键词: 亚微米颗粒, 阻燃纤维, 抗熔滴, 熔融共混, 聚对苯二甲酸乙二醇酯, 沸石咪唑酯骨架材料

Abstract:

In order to improve the flame retardancy of poly (ethylene terephthalate) (PET), a zeolite imidazolate framework material (ZIF-8) was fabricated from zinc nitrate hexahydrate and 2-methylimidazole. The surface of ZIF-8 were modified with hexachlorocyclotriphosphazene and 4,4-dihydroxydiphenylsulfone to synthesize a ZIF-8/PZS submicron particle. PET flame-retardant composites were prepared by melt blending with PET and their flame-retardant properties were investigated. Thermogravimetric analyzer, limiting oxygen index meter, vertical combustion meter, material testing machine and scanning electron microscope were used to analyze the thermal stability, flame retardancy, melt-dripping resistance, mechanical properties and flame-retardant mechanism of composite materials. The results show that the addition of 6% ZIF-8/PZS submicron particles increases the LOI value of PET to 29.2% and passes UL-94 V-0 level. The mechanical properties of the composite materials are not severely affected. ZIF-8/PZS can be effective in both the gas phase and the condensed phase, thereby giving PET composites excellent flame-retardant properties.

Key words: submicron particles, flame retardant fiber, anti-dripping, melt blending, poly (ethylene terephthalate), zeolite imidazolate framework materials

中图分类号: 

  • TS195.2

图1

ZIF-8/PZS亚微米颗粒的合成路线"

表1

不同样品的配方"

样品
编号
ZIF-8
质量/g
PZS
质量/g
ZIF-8/PZS
质量/g
PET
质量/g
总质量/
g
1# 100 100
2# 3 97 100
3# 3 97 100
4# 3 97 100
5# 6 94 100
6# 9 91 100

图2

ZIF-8和ZIF-8/PZS的SEM照片"

图3

ZIF-8的XRD光谱和ZIF-8与ZIF-8/PZS的红外光谱"

图4

ZIF-8和ZIF-8/PZS的热重曲线"

图5

氮气气氛下PET和PET阻燃复合材料的TGA曲线和DTG曲线"

表2

PET和PET阻燃复合材料的TGA和DTG数据"

样品编号 T-5%/
Tmax/
800 ℃残炭率/
%
最大分解速率/
(%·min-1)
1# 391 437 9.4 19.8
2# 343 418 14.2 17.9
3# 331 405 12.1 15.8
4# 339 421 15.3 15.3
5# 336 403 16.1 13.4
6# 335 416 16.4 13.9

表3

PET与PET阻燃复合材料的LOI和垂直燃烧数据"

样品编号 LOI值/% 垂直燃烧实验
UL94等级 熔滴 点燃脱脂棉
1# 23.1±0.1 V-2 严重
2# 26.0±0.1 V-1 缓慢
3# 25.5±0.1 V-1 严重
4# 27.3±0.1 V-0 很少
5# 29.2±0.1 V-0 很少
6# 30.6±0.1 V-0 很少

图6

热释放速率和总热释放量随时间变化曲线"

图7

裂解产物吸收强度随时间的变化曲线"

图8

1#和5#样品的炭渣照片"

图9

1#与5#残炭的拉曼光谱"

表4

样品5#及其残炭中相关元素的含量"

样品 元素含量/(mg·g-1)
C N P Zn
5# 61.56 3.18 2.42 12.05
5#残炭 86.52 1.20 13.36 79.75

图10

PET和PET阻燃复合材料的断裂强度、断裂伸长率和弹性模量"

[1] CHU J, YIN X, HE M, et al. Substance flow analysis and environmental release of antimony in the life cycle of polyethylene terephthalate products[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.125252.
doi: 10.1016/j.jclepro.2020.125252
[2] GARCIA-ESCOBAR F, BONILLA-RIOS J, ESPINOZA-MARTINEZ A B, et al. Halloysite silanization in polyethylene terephthalate composites for bottling and packaging applications[J]. Journal of Materials Science, 2021, 56(29): 16376-16386.
doi: 10.1007/s10853-021-06337-8
[3] 孔抵柱, 李家炜, 徐红, 等. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(7): 11-17.
KONG Dizhu, LI Jiawei, XU Hong, et al. Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly (ethylene terethalate)[J]. Journal of Textile Research, 2017, 38(7): 11-17.
[4] 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179.
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179.
[5] 朱玉玺, 代亚敏, 王畅, 等. PET的含硼阻燃剂和磷腈阻燃剂协同阻燃整理[J]. 印染, 2017, 43(22): 1-7.
ZHU Yuxi, DAI Yamin, WANG Chang, et al. Synergistic flame-retardant finish of PET with boron-containing compounds and nitrile flame retardant[J]. China Dyeing & Finishing, 2017, 43(22): 1-7.
[6] ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188.
doi: 10.1016/j.polymdegradstab.2019.07.005
[7] 宋昆朋, 王银杰, 刘吉平, 等. 磷腈化合物在阻燃聚合物领域的研究进展[J]. 中国塑料, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018
SONG Kunpeng, WANG Yinjie, LIU Jiping, et al. Research progress in applications of phosphazene compounds in flame retardant polymers field[J]. China Plastics, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018
[8] ZHAO S, HE M, LIU X, et al. Synthesis of a cyclomatrix-type polyphosphazenes microspheres and its flame retardancy on polycarbonate[J]. Scientia Sinica Chimica, 2017, 48(3): 282-288.
doi: 10.1360/N032017-00151
[9] MENG W, WU H, BI X, et al. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin[J]. Microporous and Mesoporous Materials, 2021. DOI: 10.1016/j.micromeso.2021.110885.
doi: 10.1016/j.micromeso.2021.110885
[10] JIAN R, LIN X, LIU Z, et al. Rationally designed zinc borate@ZIF-8 core-shell nanorods for curing epoxy resins along with low flammability and high mechanical property[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108349.
doi: 10.1016/j.compositesb.2020.108349
[11] ZHANG J, FANG J, HAN J, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252.
doi: 10.1039/C8TA04813D
[12] SHI X, DAI X, CAO Y, et al. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3887-3894.
doi: 10.1021/acs.iecr.6b04204
[13] LI S, LI T, WANG X, et al. Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate[J]. Polymers for Advanced Technologies, 2020, 31(6): 1194-1207.
doi: 10.1002/pat.4873
[14] LV X, ZENG W, YANG Z, et al. Fabrication of ZIF-8@Polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin[J]. Polymers for Advanced Technologies, 2020, 31(5): 997-1006.
doi: 10.1002/pat.4834
[15] JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465: 67-76.
doi: 10.1016/j.colsurfa.2014.10.023
[16] WEI W, LU R, XIE H, et al. Selective adsorption and separation of dyes from an aqueous solution on organic-inorganic hybrid cyclomatrix polyphosphazene submicro-spheres[J]. Journal of Materials Chemistry A, 2015, 3(8): 4314-4322.
doi: 10.1039/C4TA06444E
[17] 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J], 纺织学报, 2019, 40(10): 13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10): 13-19.
[18] QIU S, WANG X, YU B, et al. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins[J]. J Hazard Mater, 2017, 325: 327-339.
doi: S0304-3894(16)31087-1 pmid: 27932036
[19] LI T, LI S, MA T, et al. Flame-retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire[J]. Polymers for Advanced Technologies, 2019, 31(4): 795-806.
doi: 10.1002/pat.4815
[20] XU W, WANG G, XU J, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. J Hazard Mater, 2019. DOI: 10.1016/j.jhazmat.2019.120819.
doi: 10.1016/j.jhazmat.2019.120819
[21] XU W, WANG G, LIU Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances, 2018, 8(5): 2575-2585.
doi: 10.1039/C7RA12816A
[22] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(7): 11-18.
LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group[J]. Journal of Textile Research, 2021, 42(7): 11-18.
[1] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[2] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[3] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[4] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
[5] 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175.
[6] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[7] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[8] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[9] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[10] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[11] 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179.
[12] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[13] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[14] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[15] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .