纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 34-43.doi: 10.13475/j.fzxb.20220704510
陈欢欢1, 陈凯凯1(), 杨慕容2, 薛昊龙1, 高伟洪1, 肖长发1,2
CHEN Huanhuan1, CHEN Kaikai1(), YANG Murong2, XUE Haolong1, GAO Weihong1, XIAO Changfa1,2
摘要:
为开发一种绿色环保可降解的抗菌纤维,将具有良好生物可降解性的聚乳酸(PLA)与天然抗菌剂百里酚采用温控共混装置混合均匀后,利用熔融纺丝法制备PLA抗菌纤维。借助扫描电子显微镜、傅里叶变换红外光谱仪、 X射线衍射仪、单纤维强力测试仪及综合热分析仪等研究了不同质量分数百里酚对PLA抗菌纤维表观形貌、化学结构、结晶结构、热学以及力学性能的影响,并利用振荡烧瓶法测试纤维的抗菌性能。结果表明:在成纤过程中,百里酚会附着在纤维外表面发挥抗菌作用;随着百里酚质量分数的增加,PLA抗菌纤维的热分解温度和熔融温度逐渐降低,断裂伸长率先增加后缓慢减小,最高可达320.98%,是纯PLA纤维的50~90倍;另外,随着百里酚质量分数的增加,PLA抗菌纤维的结晶度逐渐增大;当百里酚质量分数大于15%时,PLA抗菌纤维的抑菌率达到99.99%以上,可完全抑制金黄色葡萄球菌和大肠杆菌的生长。
中图分类号:
[1] |
LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382(13): 1199-1207.
doi: 10.1056/NEJMoa2001316 |
[2] | 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(4): 26-31. |
WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers[J]. Journal of Textile Research, 2019, 40(4): 26-31. | |
[3] | 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179. |
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179. | |
[4] | 林雪霞, 江林峰, 邹练锋. 抗菌剂WS-8810用于棉织物的抗菌防霉性能[J]. 针织工业, 2020(11): 49-54. |
LIN Xuexia, JIANG Linfeng, ZOU Lianfeng. Anti-bacterial and anti-mold performance of antibacterial agent WS-8810 for cotton textiles[J]. Knitting Industries, 2020(11): 49-54. | |
[5] | 张瀚誉. 抗菌生物基尼龙56纤维和织物的制备及其性能研究[D]. 上海: 东华大学, 2020: 35-40. |
ZHANG Hanyu. Study on preparation and properties of antibacterial bio-based nylon 56 fibers and fabric[D]. Shanghai: Donghua University, 2020: 35-40. | |
[6] | 余娟娟, 刘淑强, 吴改红, 等. 玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能[J]. 纺织学报, 2019, 40(2): 82-86. |
YU Juanjuan, LIU Shuqiang, WU Gaihong, et al. Preparation and tensile fracture properties of basalt fabric reinforced polylactic acid composites[J]. Journal of Textile Research, 2019, 40(2): 82-86. | |
[7] | 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(3): 8-12. |
LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fibers by melt spinning[J]. Journal of Textile Research, 2019, 40(3): 8-12.
doi: 10.1177/004051757004000102 |
|
[8] | 林世东, 杜国强, 顾君, 等. 我国生物基及可降解塑料发展研究[J]. 塑料工业, 2021, 49(3): 10-12, 37. |
LIN Shidong, DU Guoqiang, GU Jun, et al. Study on bio and degradable plastics in China[J]. China Plastics Industry, 2021, 49(3): 10-12, 37. | |
[9] |
INACIO E M, SOUZA D, DIAS M L. Thermal and crystallization behavior of PLA/PLLA-grafting cellulose nanocrystal[J]. Materials Sciences and Applications, 2020, 11(1): 44-57.
doi: 10.4236/msa.2020.111004 |
[10] | 黎晓杰, 成晓琼, 段书谦, 等. 改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能[J]. 复合材料学报, 2022, 39(7): 1-18. |
LI Xiaojie, CHENG Xiaoqiong, DUAN Shuqian, et al. Properties of polylactic acid/maleic anhydride grafted polypropylene composites regulated by modified hydrotalcite[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 1-18. | |
[11] | 笪伟, 李凤红, 李鹏珍, 等. 聚乳酸复合材料增塑及增韧改性研究进展[J]. 工程塑料应用, 2022, 50(2): 155-159, 163. |
DA Wei, LI Fenghong, LI Pengzhen, et al. Research progress on plasticization and toughening of polylactic acid composite[J]. Engineering Plastics Application, 2022, 50(2): 155-159, 163. | |
[12] |
SIDDIQUI M N, REDHWI H H, TSAGKALIAS I, et al. Development of bio-composites with enhanced antioxidant activity based on poly (lactic acid) with thymol, carvacrol, limonene, or cinnamaldehyde for active food packaging[J]. Polymers, 2021.DOI:10.3390/polym13213652.
doi: 10.3390/polym13213652 |
[13] |
MARCET I, WENG S, SAEZ-ORVIZ S, et al. Production and characterisation of biodegradable PLA nanoparticles loaded with thymol to improve its antimicrobial effect[J]. Journal of Food Engineering, 2018, 239(11): 26-32.
doi: 10.1016/j.jfoodeng.2018.06.030 |
[14] |
SAEZ-ORVIZ S, MARCET I, WENG S, et al. PLA nanoparticles loaded with thymol to improve its incorporation into gelatine films[J]. Journal of Food Engineering, 2019. DOI:10.1016/j.jfoodeng.2019.109751.
doi: 10.1016/j.jfoodeng.2019.109751 |
[15] | MARKOVIC D, MILOVANOVIC S, CLERCK K D, et al. Development of material with strong antimicrobial activity by high pressure CO2 impregnation of polyamide nanofibers with thymol[J]. Journal of CO2 Utilization, 2018, 26: 19-27. |
[16] |
GAMEZ E, ELIZONDO-CASTILLO H, TASCON J, et al. Antibacterial effect of thymol loaded SBA-15 nanorods incorporated in PCL electrospun fibers[J]. Nanomaterials, 2020. DOI: 10.3390/nano10040616.
doi: 10.3390/nano10040616 |
[17] |
FIGUEROA-LOPEZ K J, VICENTE A A, REIS M A M, et al. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers[J]. Nanomaterials, 2019. DOI: 10.3390/nano9020144.
doi: 10.3390/nano9020144 |
[18] |
MILCVANOVIC S, HOLLERMANN G, ERRENST C, et al. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging[J]. Food Research International, 2018, 107: 486-495.
doi: 10.1016/j.foodres.2018.02.065 |
[19] |
NAJAFLOO R, BEHVARI M, IMANI R, et al. A mini-review of thymol incorporated materials: applications in antibacterial wound dressing[J]. Journal of Drug Delivery Science and Technology, 2020. DOI: 10.1016/j.jddst.2020.101904.
doi: 10.1016/j.jddst.2020.101904 |
[20] |
INCARDONA S D, FAMBRI L, MIGLIARESI C. Poly-L-lactic acid braided fibres produced by melt spinning: characterization and in vitro degradation[J]. Journal of Materials Science Materials in Medicine, 1996, 7(7): 387-391.
doi: 10.1007/BF00122005 |
[21] |
TAWAKKAL I S M A, CRAN M J, BIGGER S W. The influence of chemically treated natural fibers in poly(lactic acid) composites containing thymol[J]. Polymer Composites, 2018, 39(4): 1261-1272.
doi: 10.1002/pc.v39.4 |
[22] |
WU H, LU J, XIAO D, et al. Development and characterization of antimicrobial protein films based on soybean protein isolate incorporating diatomite/thymol complex[J]. Food Hydrocolloids, 2021. DOI: 10.1016/j.foodhyd.2020.106138.
doi: 10.1016/j.foodhyd.2020.106138 |
[23] |
LI S, HE T, LIAO X, et al. Structural changes and crystallization kinetics of polylactide under CO2 investigated using high‐pressure Fourier transform infrared spectroscopy[J]. Polymer International, 2015, 64(12): 1762-1769.
doi: 10.1002/pi.2015.64.issue-12 |
[24] | 杜宇, 吴玥桥, 石晓凯, 等. 茶多酚衍生物的制备及其在丁苯橡胶中的应用[J]. 橡胶工业, 2018, 65(11): 1253-1256. |
DU Yu, WU Yueqiao, SHI Xiaokai, et al. Preparation of tea polyphenol derivatives and their application in SBR compound[J]. China Rubber Industry, 2018, 65(11): 1253-1256. | |
[25] |
FEI Y, WANG H, GAO W, et al. Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films[J]. Journal of The Textile Institute, 2014, 105(2): 196-202.
doi: 10.1080/00405000.2013.834573 |
[26] |
HUANG C, ZHANG B, WANG S, et al. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system[J]. Journal of Materials Science, 2018, 53(18): 12704-12717.
doi: 10.1007/s10853-018-2576-x |
[27] |
PAL N, BANERJEE S, ROY P, et al. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced polylactic acid nanocomposite film for biomedical application[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019. DOI: 10.1016/j.msec.2019.109956.
doi: 10.1016/j.msec.2019.109956 |
[28] |
YANG J, PAN H, LI X, et al. A study on the mechanical, thermal properties and crystallization behavior of poly (lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends[J]. RSC Advances, 2017, 7(73): 46183-46194.
doi: 10.1039/C7RA07424G |
[29] |
ZHU T, MIN X, ZHANG Y, et al. Microencapsulation of thymol in poly(lactide-co-glycolide) (PLGA): physical and antibacterial properties[J]. Materials, 2019. DOI: 10.3390/ma12071133.
doi: 10.3390/ma12071133 |
[30] | 朱艳, 张显勇, 贾仕奎, 等. 低含量增塑剂PEG对PLA性能的影响[J]. 工程塑料应用, 2019, 47(12): 1-6, 20. |
ZHU Yan, ZHANG Xianyong, JIA Shikui, et al. Effects of low content plasticizer PEG on PLA perfor-mances[J]. Engineering Plastics Application, 2019, 47(12): 1-6, 20. | |
[31] | 邢阔麟, 杨长龙, 蒋正豪, 等. PBC/PLA/TP纳米复合全生物降解材料的研究[J]. 齐齐哈尔大学学报(自然科学版), 2020, 36(1): 68-70, 74. |
XING Kuolin, YANG Changlong, JIANG Zhenghao, et al. Study on PBC/PLA/TP nanocomposite biodegradable materials[J]. Journal of Qiqihar University(Natural Science Edition), 2020, 36(1): 68-70, 74. | |
[32] | ZENG J, JI Q, LIU X, et al. Electrospun polylactic acid/poly(ε-caprolactone) fibrous encapsulated thymol/MIL-68(Al) as a food packaging material[J]. Journal of Materials Research and Technology, 2022(18): 5032-5044. |
[33] |
ROY S, RHIM J W. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application[J]. International Journal of Biological Macromolecules, 2020, 162:1780-1789.
doi: 10.1016/j.ijbiomac.2020.08.094 pmid: 32814100 |
[34] | 高永生, 金斐, 朱丽云, 等. 植物精油及其活性成分的抗菌机理[J]. 中国食品学报, 2022, 22(1): 376-388. |
GAO Yongsheng, JIN Fei, ZHU Liyun, et al. Antimicrobial mechanism of plant essential oils and its active ingredients[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 376-388. | |
[35] | 韦云涛. 聚乳酸包装材料的抗菌及降解性能研究[D]. 青岛: 青岛科技大学, 2020: 37-53. |
WEI Yuntao. Study on antibacterial and degradation performance of polylactic acid packaging materials[D]. Qingdao: Qingdao University of Science & Technology, 2020: 37-53. |
[1] | 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62. |
[2] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[3] | 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41. |
[4] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[5] | 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87. |
[6] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[7] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
[8] | 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119. |
[9] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
[10] | 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47. |
[11] | 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100. |
[12] | 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186. |
[13] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[14] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
[15] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
|