纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 34-43.doi: 10.13475/j.fzxb.20220704510

• 纤维材料 • 上一篇    下一篇

聚乳酸/百里酚抗菌纤维的制备与性能

陈欢欢1, 陈凯凯1(), 杨慕容2, 薛昊龙1, 高伟洪1, 肖长发1,2   

  1. 1.上海工程技术大学 纺织服装学院, 上海 201620
    2.天津工业大学 材料科学与工程学院, 天津 300387
  • 收稿日期:2022-07-14 修回日期:2022-11-15 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 陈凯凯(1990—),男,讲师,博士。主要研究方向为功能纤维膜材料。E-mail:chenkaikai@sues.edu.cn。
  • 作者简介:陈欢欢(1996—),女,硕士生。主要研究方向为可生物降解聚合物抗菌纤维的制备及性能。
  • 基金资助:
    国家自然科学基金青年基金项目(52103035)

Preparation and properties of polylactic acid/thymol antibacterial fibers

CHEN Huanhuan1, CHEN Kaikai1(), YANG Murong2, XUE Haolong1, GAO Weihong1, XIAO Changfa1,2   

  1. 1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-07-14 Revised:2022-11-15 Published:2023-02-15 Online:2023-03-07

摘要:

为开发一种绿色环保可降解的抗菌纤维,将具有良好生物可降解性的聚乳酸(PLA)与天然抗菌剂百里酚采用温控共混装置混合均匀后,利用熔融纺丝法制备PLA抗菌纤维。借助扫描电子显微镜、傅里叶变换红外光谱仪、 X射线衍射仪、单纤维强力测试仪及综合热分析仪等研究了不同质量分数百里酚对PLA抗菌纤维表观形貌、化学结构、结晶结构、热学以及力学性能的影响,并利用振荡烧瓶法测试纤维的抗菌性能。结果表明:在成纤过程中,百里酚会附着在纤维外表面发挥抗菌作用;随着百里酚质量分数的增加,PLA抗菌纤维的热分解温度和熔融温度逐渐降低,断裂伸长率先增加后缓慢减小,最高可达320.98%,是纯PLA纤维的50~90倍;另外,随着百里酚质量分数的增加,PLA抗菌纤维的结晶度逐渐增大;当百里酚质量分数大于15%时,PLA抗菌纤维的抑菌率达到99.99%以上,可完全抑制金黄色葡萄球菌和大肠杆菌的生长。

关键词: 聚乳酸, 百里酚, 抗菌纤维, 熔融纺丝, 生物可降解纤维, 力学性能

Abstract:

Obective With the frequent occurrence of global acute infectious disease outbreaks, people are increasingly aware of individual protection. In order to protect textiles from microbial contamination and protect human health, it is important to endow textiles with antibacterial properties. However, with the gradual deterioration of white pollution, biodegradable environment-friendly polymer materials are receiving more and more attentions from researchers worldwide. Therefore, this research is committed to develop a green antibacterial fiber.
Method Polylactic acid (PLA) with good biodegradability and the natural antibacterial agent thymol were mixed evenly using a temperature control blending device before the PLA antibacterial fibers were prepared by melt spinning. The apparent morphology, chemical structure, crystallization, thermal and mechanical properties of PLA antimicrobial fibers with different thymol mass fraction were investigated by scanning electron microscopy, Fourier infrared spectroscopy, X-ray diffraction, single fibers strength meter and comprehensive thermal analyzer. The antibacterial properties of the fibers were tested by using oscillatory flask method.
Results After the addition of thymol, the two phases of PLA and thymol were interconnected without any obvious interface, and the two phase assembly led to good overall dispersion of thymol particles in the fibers, and excellent the compatibility between PLA and thymol, as evidenced in Fig. 2. In this study, the characteristic peak of C—H bending vibration on the benzene ring appeared at 800 cm-1. The hydroxyl group of thymol can interact with the carbonyl group in PLA to form valence bonds, indicating the existence of chemical bonding interactions between thymol and PLA matrix. Furthermore, the electron microscopic morphology results indicated that the chemical bonding between thymol and PLA promotes their dispersion, as shown in Fig. 4. As the mass fraction of thymol increases, the melting temperature of PLA antibacterial fibers gradually decreases(as shown in Fig. 5). There were two stages of thermal decomposition of PLA antimicrobial fibers. The first stage occurs in 100-200 ℃, which is due to the volatilization and thermal decomposition of thymol in the system. The second stage takes place in 310-395 ℃, and the maximum degradation rate is shown around 375-381 ℃, and the mass loss gradually increases up to 99.28%. This is because of the decomposition of PLA macromolecules and short chain segments, and oligomers and lactide esters are produced during the melting process, as shown in Fig.6. With the increase of thymol mass fraction, the crystallinity of PLA antibacterial fibers gradually increases(as shown in Fig.7). When the mass fraction of thymol is 15%, the elongation at break of PLA antibacterial fibers can reach 320.98%, which was 90 times more than that of pure PLA fibers, and the flexibility is greatly improved, and these are shown in Fig. 8 and Tab. 3. Moreover, the higher the thymol mass fraction, the better the antibacterial properties of antibacterial fiber's. When the mass fraction of thymol is greater than or equal to 15%, the antibacterial rate of PLA antibacterial fibers becomes higher than 99.99%, which can inhibit the growth of Escherichia coli and Staphylococcus aureus completely. Besides, the antibacterial property of thymol on Staphylococcus aureus is better than that on Escherichia coli, as shown in Tab. 4.
Conclusion During the fiber formation process, thymol will adhere to the outer surface of the fibers to show antibacterial effect. With the increase of thymol mass fraction, the elongation at break of antibacterial PLA fibers shows a trend of rapid increase and then slowly decrease, and the elongation at break of PLA antibacterial fibers with thymol mass fraction of 15% can reach 320.98%, which is 90 times of pure PLA fibers. This indicates that the addition of thymol is beneficial to improve the flexibility of PLA. In addition, with the increase of thymol mass fraction, the melting temperature of PLA antimicrobial fibers gradually reduce and the crystallinity gradually increase, which illustrates that the addition of thymol promotes the formation of the α' crystalline form of PLA. When the mass fraction of thymol is more than 15%, the antibacterial property of PLA antimicrobial fibers reaches more than 99.99%, which can completely inhibit the growth of Staphylococcus aureus and Escherichia coli. In summary, the addition of thymol can impart excellent antibacterial properties to the fibers, improve the wearability of PLA fibers, and make them better used in textiles. Subsequent studies can optimize the wearability by improving the spinning conditions and processes to achieve the mass production of antibacterial fibers.

Key words: polylactic acid, thymol, antibacterial fiber, melt spinning, biodegradable fiber, mechanical property

中图分类号: 

  • TS151

图1

PLA抗菌纤维制备流程"

表1

不同聚乳酸与百里酚配比"

样品编号 PLA质量分数 百里酚质量分数
PLA0 100 0
PLA1 90 10
PLA2 85 15
PLA3 80 20

图2

PLA抗菌纤维的扫描电镜照片"

图3

PLA抗菌纤维表面褶皱原理图"

图4

PLA抗菌纤维红外光谱图"

图5

PLA抗菌纤维DSC熔融曲线"

表2

PLA抗菌纤维的热性能和相对结晶度"

样品编号 Tm/℃ ΔHm / ( J·g-1) Xc/%
PLA0 165.54 28.69 30.62
PLA1 156.83 32.25 38.24
PLA2 151.99 32.40 40.68
PLA3 151.00 32.99 44.01

图6

PLA抗菌纤维TG和DTG曲线"

图7

PLA抗菌纤维的XRD曲线"

图8

PLA抗菌纤维应力-应变曲线"

表3

PLA抗菌纤维的力学性能"

样品编号 断裂强度/MPa 断裂伸长率/%
PLA0 55.88±5 3.56±2
PLA1 43.41±5 168.70±5
PLA2 35.27±5 320.98±5
PLA3 17.53±5 280.10±5

图9

PLA抗菌纤维拉伸断裂机制图"

表4

PLA抗菌纤维的抑菌率"

样品编号 对大肠杆菌 对金黄色葡萄球菌
对照组 0 0
PLA0 0 0
PLA1 85.00 99.20
PLA2 >99.99 >99.99
PLA3 >99.99 >99.99
[1] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382(13): 1199-1207.
doi: 10.1056/NEJMoa2001316
[2] 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(4): 26-31.
WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers[J]. Journal of Textile Research, 2019, 40(4): 26-31.
[3] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[4] 林雪霞, 江林峰, 邹练锋. 抗菌剂WS-8810用于棉织物的抗菌防霉性能[J]. 针织工业, 2020(11): 49-54.
LIN Xuexia, JIANG Linfeng, ZOU Lianfeng. Anti-bacterial and anti-mold performance of antibacterial agent WS-8810 for cotton textiles[J]. Knitting Industries, 2020(11): 49-54.
[5] 张瀚誉. 抗菌生物基尼龙56纤维和织物的制备及其性能研究[D]. 上海: 东华大学, 2020: 35-40.
ZHANG Hanyu. Study on preparation and properties of antibacterial bio-based nylon 56 fibers and fabric[D]. Shanghai: Donghua University, 2020: 35-40.
[6] 余娟娟, 刘淑强, 吴改红, 等. 玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能[J]. 纺织学报, 2019, 40(2): 82-86.
YU Juanjuan, LIU Shuqiang, WU Gaihong, et al. Preparation and tensile fracture properties of basalt fabric reinforced polylactic acid composites[J]. Journal of Textile Research, 2019, 40(2): 82-86.
[7] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(3): 8-12.
LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fibers by melt spinning[J]. Journal of Textile Research, 2019, 40(3): 8-12.
doi: 10.1177/004051757004000102
[8] 林世东, 杜国强, 顾君, 等. 我国生物基及可降解塑料发展研究[J]. 塑料工业, 2021, 49(3): 10-12, 37.
LIN Shidong, DU Guoqiang, GU Jun, et al. Study on bio and degradable plastics in China[J]. China Plastics Industry, 2021, 49(3): 10-12, 37.
[9] INACIO E M, SOUZA D, DIAS M L. Thermal and crystallization behavior of PLA/PLLA-grafting cellulose nanocrystal[J]. Materials Sciences and Applications, 2020, 11(1): 44-57.
doi: 10.4236/msa.2020.111004
[10] 黎晓杰, 成晓琼, 段书谦, 等. 改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能[J]. 复合材料学报, 2022, 39(7): 1-18.
LI Xiaojie, CHENG Xiaoqiong, DUAN Shuqian, et al. Properties of polylactic acid/maleic anhydride grafted polypropylene composites regulated by modified hydrotalcite[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 1-18.
[11] 笪伟, 李凤红, 李鹏珍, 等. 聚乳酸复合材料增塑及增韧改性研究进展[J]. 工程塑料应用, 2022, 50(2): 155-159, 163.
DA Wei, LI Fenghong, LI Pengzhen, et al. Research progress on plasticization and toughening of polylactic acid composite[J]. Engineering Plastics Application, 2022, 50(2): 155-159, 163.
[12] SIDDIQUI M N, REDHWI H H, TSAGKALIAS I, et al. Development of bio-composites with enhanced antioxidant activity based on poly (lactic acid) with thymol, carvacrol, limonene, or cinnamaldehyde for active food packaging[J]. Polymers, 2021.DOI:10.3390/polym13213652.
doi: 10.3390/polym13213652
[13] MARCET I, WENG S, SAEZ-ORVIZ S, et al. Production and characterisation of biodegradable PLA nanoparticles loaded with thymol to improve its antimicrobial effect[J]. Journal of Food Engineering, 2018, 239(11): 26-32.
doi: 10.1016/j.jfoodeng.2018.06.030
[14] SAEZ-ORVIZ S, MARCET I, WENG S, et al. PLA nanoparticles loaded with thymol to improve its incorporation into gelatine films[J]. Journal of Food Engineering, 2019. DOI:10.1016/j.jfoodeng.2019.109751.
doi: 10.1016/j.jfoodeng.2019.109751
[15] MARKOVIC D, MILOVANOVIC S, CLERCK K D, et al. Development of material with strong antimicrobial activity by high pressure CO2 impregnation of polyamide nanofibers with thymol[J]. Journal of CO2 Utilization, 2018, 26: 19-27.
[16] GAMEZ E, ELIZONDO-CASTILLO H, TASCON J, et al. Antibacterial effect of thymol loaded SBA-15 nanorods incorporated in PCL electrospun fibers[J]. Nanomaterials, 2020. DOI: 10.3390/nano10040616.
doi: 10.3390/nano10040616
[17] FIGUEROA-LOPEZ K J, VICENTE A A, REIS M A M, et al. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers[J]. Nanomaterials, 2019. DOI: 10.3390/nano9020144.
doi: 10.3390/nano9020144
[18] MILCVANOVIC S, HOLLERMANN G, ERRENST C, et al. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging[J]. Food Research International, 2018, 107: 486-495.
doi: 10.1016/j.foodres.2018.02.065
[19] NAJAFLOO R, BEHVARI M, IMANI R, et al. A mini-review of thymol incorporated materials: applications in antibacterial wound dressing[J]. Journal of Drug Delivery Science and Technology, 2020. DOI: 10.1016/j.jddst.2020.101904.
doi: 10.1016/j.jddst.2020.101904
[20] INCARDONA S D, FAMBRI L, MIGLIARESI C. Poly-L-lactic acid braided fibres produced by melt spinning: characterization and in vitro degradation[J]. Journal of Materials Science Materials in Medicine, 1996, 7(7): 387-391.
doi: 10.1007/BF00122005
[21] TAWAKKAL I S M A, CRAN M J, BIGGER S W. The influence of chemically treated natural fibers in poly(lactic acid) composites containing thymol[J]. Polymer Composites, 2018, 39(4): 1261-1272.
doi: 10.1002/pc.v39.4
[22] WU H, LU J, XIAO D, et al. Development and characterization of antimicrobial protein films based on soybean protein isolate incorporating diatomite/thymol complex[J]. Food Hydrocolloids, 2021. DOI: 10.1016/j.foodhyd.2020.106138.
doi: 10.1016/j.foodhyd.2020.106138
[23] LI S, HE T, LIAO X, et al. Structural changes and crystallization kinetics of polylactide under CO2 investigated using high‐pressure Fourier transform infrared spectroscopy[J]. Polymer International, 2015, 64(12): 1762-1769.
doi: 10.1002/pi.2015.64.issue-12
[24] 杜宇, 吴玥桥, 石晓凯, 等. 茶多酚衍生物的制备及其在丁苯橡胶中的应用[J]. 橡胶工业, 2018, 65(11): 1253-1256.
DU Yu, WU Yueqiao, SHI Xiaokai, et al. Preparation of tea polyphenol derivatives and their application in SBR compound[J]. China Rubber Industry, 2018, 65(11): 1253-1256.
[25] FEI Y, WANG H, GAO W, et al. Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films[J]. Journal of The Textile Institute, 2014, 105(2): 196-202.
doi: 10.1080/00405000.2013.834573
[26] HUANG C, ZHANG B, WANG S, et al. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system[J]. Journal of Materials Science, 2018, 53(18): 12704-12717.
doi: 10.1007/s10853-018-2576-x
[27] PAL N, BANERJEE S, ROY P, et al. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced polylactic acid nanocomposite film for biomedical application[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019. DOI: 10.1016/j.msec.2019.109956.
doi: 10.1016/j.msec.2019.109956
[28] YANG J, PAN H, LI X, et al. A study on the mechanical, thermal properties and crystallization behavior of poly (lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends[J]. RSC Advances, 2017, 7(73): 46183-46194.
doi: 10.1039/C7RA07424G
[29] ZHU T, MIN X, ZHANG Y, et al. Microencapsulation of thymol in poly(lactide-co-glycolide) (PLGA): physical and antibacterial properties[J]. Materials, 2019. DOI: 10.3390/ma12071133.
doi: 10.3390/ma12071133
[30] 朱艳, 张显勇, 贾仕奎, 等. 低含量增塑剂PEG对PLA性能的影响[J]. 工程塑料应用, 2019, 47(12): 1-6, 20.
ZHU Yan, ZHANG Xianyong, JIA Shikui, et al. Effects of low content plasticizer PEG on PLA perfor-mances[J]. Engineering Plastics Application, 2019, 47(12): 1-6, 20.
[31] 邢阔麟, 杨长龙, 蒋正豪, 等. PBC/PLA/TP纳米复合全生物降解材料的研究[J]. 齐齐哈尔大学学报(自然科学版), 2020, 36(1): 68-70, 74.
XING Kuolin, YANG Changlong, JIANG Zhenghao, et al. Study on PBC/PLA/TP nanocomposite biodegradable materials[J]. Journal of Qiqihar University(Natural Science Edition), 2020, 36(1): 68-70, 74.
[32] ZENG J, JI Q, LIU X, et al. Electrospun polylactic acid/poly(ε-caprolactone) fibrous encapsulated thymol/MIL-68(Al) as a food packaging material[J]. Journal of Materials Research and Technology, 2022(18): 5032-5044.
[33] ROY S, RHIM J W. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application[J]. International Journal of Biological Macromolecules, 2020, 162:1780-1789.
doi: 10.1016/j.ijbiomac.2020.08.094 pmid: 32814100
[34] 高永生, 金斐, 朱丽云, 等. 植物精油及其活性成分的抗菌机理[J]. 中国食品学报, 2022, 22(1): 376-388.
GAO Yongsheng, JIN Fei, ZHU Liyun, et al. Antimicrobial mechanism of plant essential oils and its active ingredients[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 376-388.
[35] 韦云涛. 聚乳酸包装材料的抗菌及降解性能研究[D]. 青岛: 青岛科技大学, 2020: 37-53.
WEI Yuntao. Study on antibacterial and degradation performance of polylactic acid packaging materials[D]. Qingdao: Qingdao University of Science & Technology, 2020: 37-53.
[1] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[2] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[3] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[4] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[5] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[6] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[7] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[8] 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119.
[9] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[10] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[11] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[12] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[13] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[14] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[15] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[10] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .