纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 55-62.doi: 10.13475/j.fzxb.20220808108

• 纤维材料 • 上一篇    下一篇

高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性

张宇静1, 陈连节2, 张思东2, 张强3, 黄瑞杰4, 叶翔宇5, 汪伦合6, 宣晓雅7, 于斌1, 朱斐超1,8,9()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江隆腾医用新材料有限公司, 浙江 湖州 313000
    3.江苏祯玉生物材料有限公司, 江苏 无锡 214000
    4.中广核俊尔新材料有限公司, 浙江 温州 325000
    5.浙江省轻工业品质量检验研究院, 浙江 杭州 310018
    6.浙江海正生物材料有限公司, 浙江 台州 318000
    7.浙江金海高科股份有限公司, 浙江 绍兴 311800
    8.绍兴宜可纺织科技有限公司, 浙江 绍兴 311800
    9.浙江理工大学湖州研究院有限公司, 浙江 湖州 313000
  • 收稿日期:2022-08-17 修回日期:2022-11-17 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 朱斐超(1988—),男,特聘副教授,博士。主要研究方向为产业用非织造材料。E-mail:zhufeichao@zstu.edu.cn。
  • 作者简介:张宇静(1999—),女,硕士生。主要研究方向为生物可降解熔喷非织造材料。
  • 基金资助:
    国家自然科学基金项目(52203050);浙江省自然科学基金项目(LQ21E030013)

Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials

ZHANG Yujing1, CHEN Lianjie2, ZHANG Sidong2, ZHANG Qiang3, HUANG Ruijie4, YE Xiangyu5, WANG Lunhe6, XUAN Xiaoya7, YU Bin1, ZHU Feichao1,8,9()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Longterm Medical Technology Co., Ltd., Huzhou, Zhejiang 313000, China
    3. Jiangsu Nature Arts Biomaterials Co., Ltd., Wuxi, Jiangsu 214000, China
    4. China General Nuclear (CGN) Juner New Materials Co., Ltd., Wenzhou, Zhejiang 325000, China
    5. Zhejiang Light Industrial Products Inspection and Research Institute, Hangzhou, Zhejiang 310018, China
    6. Zhejiang Hisun Biomaterials Co., Ltd., Taizhou, Zhejiang 318000, China
    7. Goldensea Environment Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
    8. Shaoxing Eco Textile Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
    9. Huzhou Research Institute of Zhejiang Sci-Tech University, Huzhou, Zhejiang 313000, China
  • Received:2022-08-17 Revised:2022-11-17 Published:2023-02-15 Online:2023-03-07

摘要:

为制备综合性能优异的聚乳酸(PLA)熔喷非织造材料,探究不同熔融指数PLA母粒对其熔喷可纺性的影响。以纺丝级PLA为原料,采用催化降解法分别设计制备了熔融指数为200、400、600、1 000、1 400 g/(10 min)的PLA母粒,对其分子质量及其分布、流变性能、结晶性能以及热稳定性进行研究;然后进一步制备不同熔融指数的PLA熔喷材料,分析其形貌结构、纤维直径、力学性能。结果表明:随着熔融指数的升高,PLA熔喷母粒的重均分子量从75 566 g/mol降低到29 857 g/mol,分子质量分布变宽,而玻璃化转变温度、热结晶性能及热稳定性无明显变化;随着熔融指数的升高,熔喷纤维的直径逐渐减小,纤维直径为0.5~7 μm,且熔喷材料的纵、横向断裂强度显著降低;当PLA熔喷母粒的熔融指数在400~600 g/(10 min)之间时,熔喷材料的可纺性和力学性能最佳。

关键词: 聚乳酸, 熔喷技术, 非织造材料, 熔体流动速率, 熔融指数, 流变性能

Abstract:

Objective Meltblown polymer raw materials often require a relatively high melt index (MI), due to the fact that the polymer melt is extruded from the spinneret hole and then immediately subjected to high temperature and high speed airflow for rapid fiber formation. The melt flow must match its fiber formation speed, too high and too low MI will lead to the formation of melt droplets, seriously affecting the fiber formation process. In order to investigate the effect of different high melt index of polylactic acid (PLA) masterbatches on their meltblown spinnability, the preparation of PLA meltblown nonwoven materials for overall performance improvement was investigated.
Method PLA masterbatches with melt indexes of 200, 400, 600, 1 000 and 1 400 g/(10 min) were designed and prepared by catalytic degradation method using spinning grade PLA as raw material, and their capillary rheological properties, molecular weight and its distribution, thermal-crystallization properties and thermal stability were investigated. Further, PLA meltblown materials with different melt indexes were prepared and their morphological structure, fiber diameter and mechanical properties were investigated.
Results The melt of PLA meltblown masterbatch is typically "tangential thinning", which is characterized by a decrease in shear viscosity with increasing shear rate. The lower the melt index, the more significant the change in shear viscosity with shear rate, as shown in Fig. 2. No significant differences were found in glass transition temperature and melting point for PLA masterbatches with different melt indexes, and a significant cold crystallization peak appeared in the secondary temperature rise curves for MI=600,1 000 and 1 400 g/(10 min), as is shown in Fig. 4 and Tab. 2. It was also found that the crystallinity of the melt decreases as the MI increases. The higher the MI, the lower the molecular weight and the wider the molecular weight distribution (as shown in Fig. 3 and Tab. 1), which manifests itself in lower mechanical properties. The meltblown fiber with MI=400 and 600 g/(10 min) demonstrates the best uniformity and satisfactory mechanical properties, and the most fiber diameter around between 1 and 4 μm, as shown in Fig. 6-7.
Conclusion In recent years, most of the domestic research on PLA has focused on the modification and functional finishing of this raw material, but the research on the meltblown spinnability of PLA masterbatches with high melt index and their influence on the performance of meltblown materials have not yet seen any systematic research. The research on meltblown spinnability of high melt index PLA masterbatches and its effect on the performance of meltblown materials have not been reported systematically. This study provides a theoretical basis and application guidance for the selection of high-quality PLA meltblown raw materials and the evaluation of their performance.

Key words: polylactic acid, meltblown technology, nonwoven material, melt flow rate, melt index, rheology property

中图分类号: 

  • TS176

图1

高熔融指数PLA母粒及其熔喷材料的制备流程"

图2

不同熔融指数PLA母粒的熔体流动性能"

图3

不同熔融指数PLA母粒的分子质量与其分布"

表1

不同熔融指数PLA母粒的分子质量分布参数"

熔融指数/
(g·(10 min)-1)
Mn/(g·mol-1) Mw/(g·mol-1) PDI
200 40 237 75 566 1.878
400 37 488 71 229 1.900
600 27 872 56 891 2.041
1 000 20 433 37 175 2.097
1 400 13 316 29 857 2.242

图4

不同熔融指数PLA母粒的DSC曲线"

表2

不同熔融指数PLA母粒的DSC参数"

熔融指数/(g·(10 min)-1) 玻璃化转变温度/℃ 冷结晶温度/℃ 冷结晶焓/ (J·g-1) 熔融温度/℃ 熔融焓/ (J·g-1) 结晶度/%
200 58.9 11.1 171.2 14.5 3.7
400 59.6 14.9 170.9 18.2 3.5
600 61.2 113.4 51.5 173.5 53.5 2.1
1 000 60.8 112.3 52.5 172.0 53.4 1.0
1 400 60.7 108.6 52.8 172.5 53.5 0.8

表3

不同熔融指数PLA母粒的热重参数"

熔融指数/(g·(10 min)-1) T5%/℃ T50%/℃ T95%/℃
200 339.5 371.9 389.5
400 339.7 372.3 389.9
600 335.3 371.6 389.7
1 000 336.9 374.4 392.9
1 400 331.1 370.8 388.9

图5

不同熔融指数PLA母粒的TG和DTG曲线"

图6

不同熔融指数PLA熔喷非织造材料纤维直径及其分布"

图7

不同熔融指数PLA熔喷非织造材料SEM照片"

图8

不同熔融指数PLA熔喷非织造材料纵横向强度-伸长率变化曲线"

[1] HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9.
[2] DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019, 31(9):091301.
doi: 10.1063/1.5116336
[3] 孙焕惟, 张恒, 甄琪, 等. 聚乳酸熔喷法非织造材料的应用及改性研究进展[J]. 高分子材料科学与工程, 2022, 38(5):146-153.
SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Progress on the modification and application of polylactic acid melt blown nonwovens[J]. Polymer Materials Science & Engineering, 2022, 38(5):146-153.
[4] 王镕琛, 张恒, 孙焕惟, 等. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5):158-166.
doi: 10.19491/j.issn.1001-9278.2022.05.025
WANG Rongchen, ZHANG Heng, SUN Huanwei, et al. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications[J]. China Plastics, 2022, 36(5):158-166.
doi: 10.19491/j.issn.1001-9278.2022.05.025
[5] 常敬颖, 李素英, 张旭, 等. 可降解聚乳酸熔喷超细纤维空气滤材的制备[J]. 纺织导报, 2016(6):96-97.
CHANG Jingying, LI Suying, ZHANG Xu, et al. The preparation of degradable PLA superfine fiber meltblown air filter material[J]. China Textile Leader, 2016(6):96-97.
[6] 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217.
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217.
[7] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57.
[8] BRESEE R. Fiber formation during melt blowing[J]. International Nonwovens, 2003(2): 21-28.
[9] TAN D H, ZHOU C, ELLISON C J, et al. Meltblown fibers: influence of viscosity and elasticity on diameter distribution[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(15/16): 892-900.
doi: 10.1016/j.jnnfm.2010.04.012
[10] 胡声威, 钱鑫, 王素玉, 等. 熔喷聚丙烯原料性能及加工工艺研究[J]. 塑料工业, 2021, 49(7):148-152.
HU Shengwei, QIAN Xin, WANG Suyu, et al. Study on properties and processing technology of melt-blown polypropylene raw material[J]. China Plastics Industry, 2021, 49(7):148-152.
[11] YESIL Y, BHAT G S. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science & Technology, 2016, 28(6):780-793.
[12] 林佩洁, 王琳, 许庆燕, 等. 滤材用聚对苯二甲酸丁二酯熔喷非织造布的研制[J]. 合成纤维, 2011, 40(5):5-11.
LIN Peijie, WANG Lin, XU Qingyan, et al. Study on the preparation of polybutylene terephthalate melt-blown nonwovens for filters[J]. Synthetic Fiber in China, 2011, 40(5):5-11.
[13] 孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(6):86-93.
SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process[J]. Journal of Textile Research, 2022, 43(6):86-93.
doi: 10.1177/004051757304300205
[14] ZHU F C, YU B, SU J J, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwovens[J]. Autex Research Journal, 2020, 20(1):24-31.
doi: 10.2478/aut-2019-0002
[15] 张水法, 张莉慧. 一种环保熔喷滤芯制作装置: 202010275399.X[P]. 2020-04-07.
ZAHNG Shuifa, ZHANG Lihui. An environment-friendly melt blown filter element manufacturing device: 202010275399.X[P]. 2020-04-07.
[16] DIETER H M, ANDREAS K. Meltblown fabrics from biodegradable polymers[J]. Inrernational Nonwovens Journal, 2001.DOI:10.1177/15589250010s-1000106.
doi: 10.1177/15589250010s-1000106
[17] 渠叶红, 柯勤飞. 熔喷聚乳酸非织造材料的研究进展[J]. 产业用纺织品, 2003, 21(12): 1-5.
QU Yehong, KE Qinfei. The investigation progress on melt-blown polylactic acid nonwovens[J]. Technical Textiles, 2003, 21(12): 1-5.
[18] 渠叶红, 柯勤飞, 靳向煜, 等. 熔喷聚乳酸非织造材料工艺与过滤性能研究[J]. 产业用纺织品, 2005, 23(5): 19-22.
QU Yehong, KE Qinfei, JIN Xiangyu, et al. Study on the meltblown PLA nonwoven process and filtration property[J]. Technical Textiles, 2005, 23(5): 19-22.
[19] 顾伟军, 周文强, 刘桂刚, 等. 一种生物可降解熔喷材料及其制备方法和应用:202111397098.5[P]. 2021-11-21.
GU Weijun, ZHOU Wenqiang, LIU Guigang, et al. Biodegradable melt-blown material as well as preparation method and application thereof:202111397098.5[P]. 2021-11-21.
[20] 彭威, 江太君. 热降解法制备喷丝级高熔融指数聚丙烯及其流变性能研究[J]. 化工技术与开发, 2020, 49(11):15-17.
PENG Wei, JIANG Taijun. Preparation and properties of melt-blown polypropylene manufactured by thermal[J]. Technology & Development of Chemical Industry, 2020, 49(11):15-17.
[21] 潇姝. Nature Works公司计划于2013年提供新的高性能IngeoTM树脂和丙交酯[J]. 江苏纺织, 2011, 19(4):39.
XIAO Shu. Nature Works plans to provide new high-performance IngeoTM resin and lactide in 2013[J]. Jiangsu Textile, 2011, 19(4):39.
[22] 朱斐超. 熔喷非织造用PHBV/PLA共混材料相容性与可纺性研究[D]. 杭州: 浙江理工大学, 2014:33.
ZHU Feichao. Study on the miscibility and spinnability of PHBV/PLA blends for melt-blown[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 33.
[23] 孙焕惟. 聚乳酸非织造材料的后牵伸辅助熔喷成型工艺及其增韧机理研究[D]. 郑州: 中原工学院, 2022:29.
SUN Huanwei. Research on post-drafting assisted melt blown molding process and toughening mechanism of polylactic acid nonwovens[D]. Zhengzhou: Zhongyuan University of Technology, 2022:29.
[24] 朱斐超. 尼龙11/埃洛石纳米管复合聚乳酸材料及其增强增韧熔喷非织造材料的研究[D]. 杭州: 浙江理工大学, 2019:29.
ZHU Feichao. Study on polyamide 11/halloysite nanotubes hybrid poly(lactic acid) composites and reinforced and toughened melt-blown nonwovens[D]. Hangzhou: Zhejiang Sci-Tech University, 2019:29.
[25] 朱传龙, 蔡芳昌, 周勤, 等. Taguchi法研究影响聚乳酸熔融指数的因素[J]. 胶体与聚合物, 2010, 28(2):75-77.
ZHU Chuanlong, CAI Fangchang, ZHOU Qin, et al. Parametric study of improving PLA melt index using Taguchi method[J]. Chinese Journal of Colloid & Polymer, 2010, 28(2):75-77.
[1] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[2] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[3] 韩万里, 谢胜, 王新厚, 王玉栋. 熔喷气流场中的纤维运动模拟与分析[J]. 纺织学报, 2023, 44(01): 93-99.
[4] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[5] 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34.
[6] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[7] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[8] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[9] 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119.
[10] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[11] 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21.
[12] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[13] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[14] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[15] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .