纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 66-73.doi: 10.13475/j.fzxb.20250205901

• 纤维材料 • 上一篇    下一篇

长效型抗菌聚酰胺 66 纤维的制备及其性能

孙鹤情1,2, 赵聪颖1,2, 吴冰雪1,2, 张幼维1,2()   

  1. 1.东华大学 先进纤维材料全国重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2025-02-26 修回日期:2025-06-18 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 张幼维(1974—),女,教授,博士。主要研究方向为功能高分子材料。E-mail:zhyw@dhu.edu.cn
  • 作者简介:孙鹤情(2000—),女,硕士生。主要研究方向为抗菌聚酰胺纤维。

Preparation and properties of long-lasting antimicrobial polyamide 66 fibers

SUN Heqing1,2, ZHAO Congying1,2, WU Bingxue1,2, ZHANG Youwei1,2()   

  1. 1. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2025-02-26 Revised:2025-06-18 Published:2025-09-15 Online:2025-11-12

摘要: 为解决水溶性聚六亚甲基胍盐酸盐(PHMG)抗菌剂在纤维中易溶出、耐久性差的问题,选用多环氧聚苯乙烯对PHMG 进行改性制得胍盐共聚物,并与聚酰胺 66(PA66)共混挤出造粒制得抗菌 PA66 母粒,再经共混熔融纺丝制得长效型抗菌 PA66 纤维。借助傅里叶红外光谱仪、元素分析仪、差示扫描量热仪、热重分析仪、扫描电子显微镜、X 射线光电能谱仪等表征了抗菌 PA66 母粒的化学结构和热性能,抗菌 PA66 纤维的微观形貌、结晶结构、力学性能和抗菌性能,以及纤维断面的抗菌剂分布。结果表明:抗菌 PA66 母粒热稳定性良好,能满足熔融纺丝要求;抗菌剂在抗菌 PA66 纤维表面发生富集,PHMG 添加量为 0.33% 的抗菌 PA66 纤维对大肠埃希菌和金黄色葡萄球菌的抑菌率可达 99% 以上,PHMG 添加量为 0.45% 的抗菌纤维,洗涤 50 次后,对大肠埃希菌和金黄色葡萄球菌的抑菌率仍可达 95% 以上,且纤维的断裂强度达 5.19 cN/dtex,抗菌性能高效耐久。

关键词: 抗菌纤维, 聚酰胺 66, 聚六亚甲基胍盐酸盐, 多环氧聚苯乙烯, 抗菌剂

Abstract:

Objective Antimicrobial polyamide 66 (PA66) fibers have gained a lot of attention because of the demand from the apparel and biomedical fields. Poly(hexamethylene guanidine hydrochloride) (PHMG) is an ideal antimicrobial agent because of its broad-spectrum antimicrobial properties, good biocompatibility, low cost and non-toxicity. However, due to its excellent water solubility, the antimicrobial fibres produced by direct blending of PHMG with the matrix exhibit shortcomings such as poor washability and dissolution tendency. The present study aims at producing long-lasting antimicrobial polyamide 66 (PA66) fibers via modification of PHMG with polyepoxy polystyrene (PSG).

Method PHMG was first modified by melt blending with PSG via a twin-screw extruder to produce guanidine salt copolymer (PSGP). Next, PSGP was melt blended with PA66 chips via a twin-screw extruder to produce antimicrobial PA66 masterbatch. Finally, the antimicrobial PA66 masterbatch was used as additives to fabricate long-lasting antimicrobial PA66 fibers through blend melt spinning techniques. The chemical structure and thermal properties of the antimicrobial PA66 masterbatch, the micromorphology, crystal structure, mechanical and antimicrobial properties, as well as the distribution of Cl element on the cross-section of the antimicrobial PA66 fibres were investigated.

Results The antimicrobial PA66 masterbatch demonstrated exceptional thermal stability with almost no mass loss below 310 ℃, fully satisfying the thermal requirements for melt spinning processes. Remarkably, even at a PHMG loading as low as 0.33%, the resulting PA66 fibers achieved outstanding antibacterial efficacy, showing 99.46% and over 99.99% reduction rates against E. coli and S. aureus, respectively. When the PHMG content was increased to 0.39%, the fibers exhibited over 99.99% antibacterial activity against both bacterial strains. Notably, after 50 washing cycles, fibers with a PHMG dosage of 0.45% maintained impressive antibacterial performance with over 95% inhibition rates for both microorganisms, demonstrating excellent wash durability and good long-lasting antimicrobial properties. Mechanical characterization revealed that as the dosage of PHMG increased gradually from 0% to 0.33%, 0.39%, 0.45% and 0.51%, the breaking strength of the resulting fibers decreased continuously from (6.09±0.21) cN/dtex to (5.48±0.22), (5.35±0.20), (5.19±0.23), and (4.98±0.27) cN/dtex, while the orientation factor only slightly decreased from 0.79±0.03 to 0.77±0.02, 0.76±0.04, 0.76±0.03, and 0.75±0.04. DSC and XRD analyses indicated that the incorporation of PHMG reduced crystallinity and diminished crystal structure regularity in the fibers, explaining the observed mechanical property changes. Importantly, despite this reduction, all antibacterial fibers maintained breaking strengths above (4.98±0.27) cN/dtex, which fulfills the mechanical requirements for practical textile applications. SEM morphological analysis demonstrated excellent compatibility between PSGP and PA66 matrix, with no evidence of phase-separation. Surface characterization studies, including the cross-section radial line-scanning of Cl (a characteristic element of PHMG) and XPS analysis of the antimicrobial PA66-0.51 fiber containing 0.51% PHMG, revealed significant PHMG enrichment on the fiber surface compared to both the inner part and bulk average of the fiber. This surface enrichment phenomenon explains the fibers' exceptional antibacterial performance at such low PHMG loadings.

Conclusion Antimicrobial PA66 masterbatch exhibits good thermal stability. The introduction of PSG promotes the enrichment of PHMG on the fiber surface during the spinning process. This enhances the utilization rate of the antimicrobial agent, enabling the antimicrobial PA66 fiber to achieve over 99% antibacterial rates against E. coli and S. aureus at a low PHMG dosage of 0.33%. At a PHMG dosage of 0.45%, the resulting antimicrobial fibre not only remained excellent antimicrobial properties after 50 washing cycles, but also exhibited good mechanical properties with a breaking tenacity of 5.19 cN/dtex. In summary, this work provides a new approach for developing PA66 fibre materials that combine excellent mechanical properties with efficient antimicrobial performance, demonstrating great potential for applications in medical, sports, and home textiles.

Key words: antimicrobial fiber, polyamide66, poly(hexamethylene guanidine hydrochloride), polyepoxy polystyrene, antimicrobial agent

中图分类号: 

  • TQ342.8

图1

抗菌 PA66 母粒的制备路线"

图2

PHMG、PSG、PSGP、水洗后 PSGP、PA66和抗菌PA66 母粒的FT-IR谱图"

图3

PSGP、PA66 和抗菌 PA66 母粒的热性能"

图4

PA66 和 PA66-0.51 初生纤维的 SEM 照片"

图5

PA66 和 PA66-0.51 纤维的WAXD图谱"

图6

PA66 和 PA66-0.51 纤维的 DSC 曲线"

表1

纤维的断裂强度、断裂伸长率和取向因子对比"

样品
编号
PHMG质量
分数/%
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
取向
因子
PA66 0 81.22±1.73 6.09±0.21 10.3±0.6 0.79±0.03
PA66-0.33 0.33 76.34±2.14 5.48±0.22 10.1±0.7 0.77±0.02
PA66-0.39 0.39 76.32±2.18 5.35±0.20 10.2±0.6 0.76±0.04
PA66-0.45 0.45 75.18±2.03 5.19±0.23 10.6±0.7 0.76±0.03
PA66-0.51 0.51 73.01±1.97 4.98±0.27 10.4±0.7 0.75±0.04

表2

PA66 纤维和抗菌 PA66 纤维的抑菌率"

样品 洗涤处理 抑菌率/%
对大肠埃希菌 对金黄色葡萄球菌
PA66 0 0
PA66-0.33 未洗涤 99.46 >99.99
洗涤50次 82.52 90.14
PA66-0.39 未洗涤 >99.99 >99.99
洗涤50次 92.93 98.58
PA66-0.45 未洗涤 >99.99 >99.99
洗涤50次 95.31 >99.99
PA66-0.51 未洗涤 >99.99 >99.99
洗涤50次 98.34 >99.99

图7

PA66-0.51 初生纤维断面 Cl 元素的 EDS 线扫图"

表3

PA66-0.51 纤维的断面半径 EDS 线扫及表面 XPS 扫描结果"

测试方法 原子占比/%
C O N Cl
EDS线扫 72.09 15.16 12.69 0.05
XPS 75.88 16.87 7.12 0.13
[1] ZHANG J, GAO X, ZHANG X, et al. Polyamide 66 and amino-functionalized multi-walled carbon nanotube composites and their melt-spun fibers[J]. Journal of Materials Science, 2019, 54(16):11056-11068.
doi: 10.1007/s10853-019-03619-0
[2] 赵红艳, 房文鹏, 曾成, 等. 83dtex/24f 阻燃尼龙66纤维的制备及性能研究[J]. 合成纤维工业, 2024, 47(4):47-51.
ZHAO Hongyan, FANG Wenpeng, ZENG Cheng, et al. Preparation and performance study of 83dtex/24f flame-retardant nylon 66 fibre[J]. China Synthetic Fiber Industry, 2024, 47(4):47-51.
[3] 成天保, 刘中宾, 张申奥, 等. 尼龙66工业丝生产工艺及影响可纺性的因素[J]. 合成纤维, 2024, 53(4):16-18.
CHENG Tianbao, LIU Zhongbin, ZHANG Shenao, et al. Production process of nylon 66 industrial filament and factors affecting spinnability[J]. Synthetic Fiber in China, 2024, 53(4):16-18.
[4] LIN J, WINKELMAN C, WORLEY S D, et al. Antimicrobial treatment of nylon[J]. Journal of Applied Polymer Science, 2001, 81(4):943-947.
doi: 10.1002/app.v81:4
[5] ZHANG M, GAO Q, YANG C, et al. Preparation of antimicrobial MnO4-doped nylon-66 fibers with excellent laundering durability[J]. Applied Surface Science, 2017, 422:1067-1074.
doi: 10.1016/j.apsusc.2017.06.070
[6] PANT H R, PANDEYA D R, NAM K T, et al. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles[J]. Journal of Hazardous Materials, 2011, 189(12):465-471.
doi: 10.1016/j.jhazmat.2011.02.062
[7] DURAL-EREM A, OZCAN G, SKRIFVARS M. Antibacterial activity of PA6/ZnO nanocomposite fibers[J]. Textile Research Journal, 2011, 81(16):1638-1646.
doi: 10.1177/0040517511407380
[8] 郑晓頔, 盛平厚, 蒋佳岑, 等. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(3):19-27.
ZHENG Xiaodi, SHENG Pinghou, JIANG Jiazen, et al. Preparation and properties of copper-modified antimicrobial and anti-mite polyamide 6 fibres[J]. Journal of Textile Research, 2024, 45(3):19-27.
[9] DIZAJ S M, LOTFIPOUR F, BARZEGAR-JALALI M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles[J]. Materials Science and Engineering:C, 2014, 44:278-284.
doi: 10.1016/j.msec.2014.08.031
[10] 项荣, 丁栋博, 范亮亮, 等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18(3):470-475.
XIAN Rong, DING Dongbo, FAN Liangliang, et al. Progress of research on the antibacterial mechanism of zinc oxide and its safety[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(3):470-475.
[11] BHANDARI V, JOSE S, BADANAYAK P, et al. Antimicrobial finishing of metals, metal oxides, and metal composites on textiles: a systematic review[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 86-101.
doi: 10.1021/acs.iecr.1c04203
[12] GUAN Y, XIAO H N, SULLIVAN H, et al. Antimicrobial-modified sulfite pulps prepared by in situ copolymerization[J]. Carbohydrate Polymers, 2007, 69(4):688-696.
doi: 10.1016/j.carbpol.2007.02.013
[13] LIM N, GOH D, BUNCE C, et al. Comparison of polyhexamethylene biguanide and chlorhexidine as monotherapy agents in the treatment of acanthamoeba keratitis[J]. American Journal of Ophthalmology, 2008, 145(1):130-135.
pmid: 17996208
[14] OULE M K, AZINWI R, BERNIER A M, et al. Poly hexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections[J]. Journal of Medical Microbiology, 2008, 57(12):1523-1528.
doi: 10.1099/jmm.0.2008/003350-0
[15] MATHURIN Y K, KOFFI-NEVRY R, GUEHI S T, et al. Antimicrobial activities of polyhexamethylene guanidine hydrochloride-based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria[J]. Journal of Food Protection, 2012, 75(6):1167-1171.
doi: 10.4315/0362-028X.JFP-11-361 pmid: 22691490
[16] GILBERT P, MOORE L E. Cationic antiseptics:diversity of action under a common epithet[J]. Journal of Applied Microbiology, 2005, 99(4):703-715.
doi: 10.1111/jam.2005.99.issue-4
[17] CARMONA-RIBEIRO A M, MELO CARRASCO L D. Cationic antimicrobial polymers and their assembl-ies[J]. International Journal of Molecular Sciences, 2013, 14(5):9906-9946.
doi: 10.3390/ijms14059906
[18] AL-HITI M M A, GILBERT P. Changes in preservative sensitivity for the USP antimicrobial agents effectiveness test micro-organisms[J]. Journal of Applied Bacteriology, 1980, 49(1):119-126.
doi: 10.1111/jam.1980.49.issue-1
[19] KIM S H, SEMENYA D, CASTAGNOLO D. Antimicrobial drugs bearing guanidine moieties:a review[J]. European Journal of Medicinal Chemistry, 2021, 216:113293.
doi: 10.1016/j.ejmech.2021.113293
[20] WANG L, ZHOU B, DU Y, et al. Guanidine derivatives leverage the antibacterial performance of bio-based polyamide PA56 fibres[J]. Polymers, 2024, 16(19):2707.
doi: 10.3390/polym16192707
[21] 张瀚誉, 钱思琦, 朱瑞淑, 等. 抗菌生物基聚酰胺56及纤维的制备与性能研究[J]. 合成纤维, 2020, 49(12):1-7.
ZHANG Hanyu, QIAN Siqi, ZHU Ruishu, et al. Preparation and properties of antibacterial bio-based polyamide 56 and fibres[J]. Synthetic Fiber in China, 2020, 49(12):1-7.
[1] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[2] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[3] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[4] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[5] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[6] 黄效华, 周家良, 池姗, 刘彦明, 伏广伟, 胡泽旭, 相恒学, 朱美芳. 聚酯/二氧化硅/橙活性成分改性纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 21-27.
[7] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[8] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[9] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
[10] 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(04): 26-31.
[11] 王亚 黄菁菁 张如全 . 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10): 99-103.
[12] 姚萍 江文 王江 黄金洪 周小华. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报, 2018, 39(04): 9-13.
[13] 黄成 陈永邦 叶敬平 阎克路. 引发剂水相乳化工艺对卤胺类单体接枝聚酯抗菌性的影响[J]. 纺织学报, 2017, 38(06): 175-180.
[14] 田艳红 王建坤 杨菊花 陈永裕 王键. 载铜离子抗菌剂的制备及其络合棉织物的性能[J]. 纺织学报, 2015, 36(12): 79-84.
[15] 胡凤霞 杜兆芳 张健. 壳聚糖/Ag+复合抗菌剂整理莫代尔织物[J]. 纺织学报, 2014, 35(12): 80-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!