纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 187-196.doi: 10.13475/j.fzxb.20250103501

• 服装工程 • 上一篇    下一篇

基于仿生结构的抗菌无缝瑜伽服研发及其热湿舒适性

许微辉, 朱婷婷, 万爱兰(), 马丕波   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2025-01-14 修回日期:2025-06-26 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 万爱兰(1976—),女,副教授,博士。主要研究方向为纺织材料与智能纺织品。E-mail:ailanwan@163.com
  • 作者简介:许微辉(2003—),男,硕士生。主要研究方向为功能性针织产品研发。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP123005);江苏省科技计划重点研发项目(BE2022131)

Development of antibacterial seamless yoga clothes and its thermal-wet comfort based on bionic structure

XU Weihui, ZHU Tingting, WAN Ailan(), MA Pibo   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2025-01-14 Revised:2025-06-26 Published:2025-10-15 Online:2025-10-15

摘要: 为克服瑜伽服出汗后易滋生细菌的缺点,以加入 Ag+的抗菌氨纶为原材料,制备了具有功能分区的无缝瑜伽服。仿滴水观音茎叶结构设计了 15 种单向导湿织物,通过对织物弹性回复率、透气率、透湿量、热阻和液态水分管理能力等指标进行测试,探究纱线种类与细度、织物结构与密度及输水性能对织物抗菌性能和热湿舒适性的影响。结果表明:采用六边形凸点-凹点组织的织物弹性回复性最好,达 86.32%,单向传递指数最高达384.29%。根据人体工学需求制备功能分区的无缝瑜伽背心,并对其抗菌性能和热学性能进行了表征,由10名受试者进行主观评价,穿着研发的背心运动后的热、湿舒适性远好于普通背心。红外热成像结果显示静止几分钟后该背心可快速导湿,运动后静止3 min,人体体温能恢复到运动前温度,15 min后其抗菌率可达99.99%。

关键词: 仿生结构, 抗菌氨纶, 无缝瑜伽服, 热湿舒适性, 功能模块化

Abstract:

Objective Because yoga clothing is close to the body and has limited air permeability, it is difficult for the material to transfer sweat. The warm and humid environment provides suitable conditions for bacterial growth. However, there are few studies on the bionic structure and antibacterial properties of yoga clothing. This research aims to develop antibacterial yoga clothing with functional divisions based on bioinspired structures.

Method Seamless yoga clothing was prepared with functional divisions using antibacterial spandex added with Ag+ as raw material. Fifteen types of single guide wet fabrics were designed based on the stems and leaves of Dishgyi. The effects of fabric structure, yarn type, thickness and hydrophobicity on antibacterial properties, thermal-moisture comfort and fabric density were discussed with five indexes of elastic recovery rate, air permeability, moisture permeability, thermal resistance and liquid water management ability as the research objects. According to the principle of ergonomics, a yoga clothing with functional divisions was designed, and its antibacterial and thermal properties were characterized.

Results 15 fabrics were woven based on bionic Dishgyi. Among them, the first twelve were used for the project vests, and the last three were benchmarck samples used for comparison. All the comparison samples were of weft flat needle structure. The test showed that the elastic recovery of the hexagonal convex-concave structure of the fabric was the best, which was up to 86.32%, and the air permeability of the strip-strip fabric sample was as high as 596 mm/s. The moisture permeability of 1+1 false rib-wavy honeycomb fabric sample was up to 7 870 g/(m2·d), the weft flat stitch 1×1 strip structure had the lowest thermal resistance and excellent heat dissipation, and the hexagonal convex and concave structure had the best water management ability. These highly distinctive fabrics were used to form various parts of the functional modular yoga wear. For example, in the shoulder area, the elastic misaligned striped-checkered structure was selected, and for areas prone to sweating on the chest and back, 1+1 false ribbed-wavy honeycomb tissue with good breathability, moisture permeability and strong water management ability were selected. A seamless yoga clothing with a single guide wet performance was compared with an ordinary yoga clothing. Participants wearing a seamless exercise yoga vest were asked to run on a treadmill for 15 minutes, and then to be stationary for 5, 10 and 15 minutes. Antibacterial tests were carried out on the chest and back center which were the most sweaty areas. The seamless exercise yoga vest made of silver ion antibacterial spandex and hydrophobic nylon showed good overall antibacterial performance. With the increase of resting time, the antibacterial rate continues to increase, and the number of colonies increased from an average of 15 after 5 minutes of resting to 0 after 15 minutes of resting. The subject wore a seamless exercise yoga vest, jogged on the treadmill for 15 minutes, and then stood still for 15 minutes. The infrared imager recorded the temperature change of the human body surface, and stood still before pre-running. The red area of the subject vest was almost twice less than that of the control vest. With the increase of resting time, the red area decreases and the subject vest descended faster. The temperature of the chest center dropped faster after resting due to factors such as breast protrusion.

Conclusion The results showed that the prepared seamless yoga clothing with modular functions based on bioinspired structures had excellent antibacterial and thermal comfort. The body temperature was made to return to the pre-exercise temperature after 3 minutes of resting, and the antibacterial rate could reach 99.99% after 15 minutes.

Key words: bionic structure, antibacterial spandex, seamless yoga clothing, thermal-wet comfort, function modularization

中图分类号: 

  • TS186.3

图1

织物水分传递模型及设计思路"

图2

吸湿排汗织物仿生设计 注:白色方框代表线圈;黑色代表浮线。"

表1

双面织物的表层-里层组织结构"

组织
编号
表层-里层组织结构 组织
编号
表层-里层组织结构
1# 纬平针-纬平针组织 7# 芝麻点平针-波浪线方格组织
2# 1+1 假罗纹-波浪线蜂巢组织 8# 纬平针-1×1抽条组织
3# 纬平针-树皮组织 9# 纬平针-波浪线1×1抽条组织
4# 1+1 假罗纹-波浪线树皮组织 10# 抽条-抽条组织
5# 纬平针-蜂巢组织 11# 六边形凸点-凹点组织
6# 芝麻点平针-方格组织 12# 错位抽条-方格组织

图3

12种仿生织物组织图"

表2

织物基本规格参数"

试样
编号
横密/
(纵行·
(5 cm)-1)
纵密/
(横列·
(5 cm)-1)
总密度/
(圈·
(25 cm2)-1)
面密度/
(g·m-2)
厚度/
mm
1#-1 70 65 4 450 384 1.38
2#-2 78 73 5 694 412 1.36
3#-3 80 143 11 440 432 1.38
4#-4 80 75 6 000 444 1.52
5#-5 78 115 8 970 372 1.30
6#-6 83 75 6 225 340 1.35
7#-7 83 75 6 225 348 1.37
8#-8 90 128 11 475 360 1.40
9#-9 90 128 11 475 372 1.38
10#-10 58 165 9 570 320 1.41
11#-11 65 140 9 100 494 1.72
12#-12 85 160 13 600 443 1.59
1#-13 75 70 5 250 390 1.40
1#-14 70 65 4 450 384 1.38
1#-15 70 65 4 450 384 1.38

图4

15种仿生织物实物正反面照片"

表3

锦纶力学性能"

纱线 断裂强力/cN 伸长率/% 定伸长强度/(cN·dtex-1) 断裂强度/(cN·dtex-1) 弹性模量/(cN·dtex-1)
普通锦纶 315.2±2.50 22.06±4.65 10.3±1.53 40.5±2.47 215.0±2.34
疏水锦纶 366.3±3.70 31.00±5.00 10.5±6.69 47.1±3.69 250.1±2.99

表4

15种仿生织物的弹性回复性能"

试样编号 弹性回复率/% 弹性回复率CV值/%
横向 纵向 横向 纵向
1#-1 80.01 73.44 1.77 1.17
2#-2 77.30 70.41 7.65 2.56
3#-3 78.23 71.10 0.73 3.80
4#-4 76.05 71.62 0.82 0.12
5#-5 77.34 70.77 3.80 3.30
6#-6 70.05 70.00 5.80 2.14
7#-7 69.38 68.03 1.80 2.45
8#-8 70.31 72.32 2.61 1.12
9#-9 68.03 63.68 0.91 3.61
10#-10 69.35 59.95 3.34 4.41
11#-11 86.32 77.35 3.43 2.81
12#-12 77.55 75.61 1.46 2.71
1#-13 72.91 73.75 1.12 0.32
1#-14 79.86 72.87 2.34 4.02
1#-15 79.91 73.11 3.19 1.27

图5

织物透气性与透湿性"

表5

织物热阻测试结果"

试样
编号
热阻/
(10-3 m2·K·W-1)
传热系数/
(W·(m2·K)-1)
克罗值/
clo
1#-1 33.6 29.76 0.216
2#-2 33.1 29.24 0.212
3#-3 33.5 30.16 0.213
4#-4 34.1 29.74 0.219
5#-5 31.7 31.57 0.204
6#-6 30.7 32.60 0.198
7#-7 30.5 32.61 0.199
8#-8 29.8 33.55 0.192
9#-9 32.4 30.83 0.209
10#-10 32.2 31.01 0.208
11#-11 43.5 23.04 0.280
12#-12 30.4 33.44 0.196
1#-13 34.7 28.59 0.222
1#-14 31.3 31.94 0.202
1#-15 30.5 32.61 0.197

表6

织物试样的液态水分管理能力"

试样
编号
织物正
反面
tJ/s VW/
(%·s-1)
R/
mm
tD/
(mm·s-1)
O/%
1#-1 T 2.95 75.82 22.5 3.50 323.89
B 2.41 66.20 23.8 4.86
2#-2 T 5.10 64.05 23.0 3.69 280.37
B 2.55 50.99 23.0 3.72
3#-3 T 4.10 55.83 16.3 2.92 259.07
B 3.16 64.72 17.5 3.23
4#-4 T 3.55 53.20 15.0 2.55 261.76
B 3.05 69.27 16.3 3.16
5#-5 T 4.12 46.87 22.5 3.27 276.63
B 2.55 59.69 23.7 4.02
6#-6 T 5.11 61.06 23.0 3.48 279.30
B 3.59 46.25 23.0 3.68
7#-7 T 4.30 71.62 20.0 2.85 265.21
B 2.79 70.76 20.0 3.89
8#-8 T 4.40 59.76 23.0 2.84 271.10
B 3.51 75.60 24.0 4.76
9#-9 T 5.10 53.34 20.0 2.89 271.16
B 4.58 64.29 20.8 3.81
10#-10 T 4.21 53.61 18.5 2.66 265.40
B 2.15 62.22 20.0 4.08
11#-11 T 2.71 85.75 21.5 5.34 384.29
B 0.29 499.17 21.5 17.22
12#-12 T 4.28 25.23 7.0 1.02 306.78
B 0.20 47.74 21.0 21.43
1#-13 T 4.21 67.70 20.0 3.16 321.67
B 2.67 65.05 20.0 4.41
1#-14 T 1.00 52.00 23.0 6.70 182.70
B 1.50 44.20 23.0 5.30
1#-15 T 4.10 56.90 22.8 2.90 158.00
B 4.10 48.40 22.8 3.10

图6

抗菌无缝瑜伽背心结构分区设计图"

图7

抗菌无缝瑜伽背心样衣实物图"

图8

运动静止后抗菌性能"

图9

穿着2种背心跑步前后15 min的红外图像"

表7

受试者主观评价"

受试人
编号
背心 热感 湿感 黏感 着装舒
适感
A 抗菌 微黏 不适
普通 湿 极黏 极不适
B 抗菌 微潮 不黏 舒适
普通 非常黏 不适
C 抗菌 微潮 微黏 舒适
普通 湿 非常黏 不适
D 抗菌 微潮 微黏 舒适
普通 湿 极黏 极不适
E 抗菌 微潮 不黏 舒适
普通 湿 非常黏 级不适
F 抗菌 非常黏 不适
普通 湿 极黏 极不适
G 抗菌 微干 不黏 舒适
普通 湿 微黏 不适
H 抗菌 微潮 不黏 舒适
普通 湿 非常黏 极不适
I 抗菌 微潮 微黏 舒适
普通 湿 非常黏 极不适
J 抗菌 微干 不黏 舒适
普通 湿 极黏 不适
[1] MAILING L J, ALLEN J M, BUFORD T W, et al. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health[J]. Exercise and Sport Sciences Reviews, 2019, 47(2): 75-85.
doi: 10.1249/JES.0000000000000183 pmid: 30883471
[2] SZOSTAK-KOTOWA J. Biodeterioration of textiles[J]. International Biodeterioration & Biodegradation, 2004, 53(3): 165-170.
[3] 汪秀琛, 吴洁莹, 吴咏鹏, 等. 含棉服装面料纳米抗菌芳香后整理工艺研究[J]. 针织工业, 2018(12): 35-38.
WANG Xiuchen, WU Jieying, WU Yongpeng, et al. Study on nano-antibacterial aromatic finishing process of cotton-containing garment fabric[J]. Knitting Industries, 2018(12): 35-38.
[4] 张海芳, 郑伟, 高普, 等. 聚乳酸纤维与涤纶混纺织物的吸湿排汗整理[J]. 针织工业, 2015, (11): 43-47.
ZHANG Haifang, ZHENG Wei, GAO Pu, et al. Moisture absorption and perspiration finishing of polylactic acid fiber and polyester blended fabric[J]. Knitting Industries, 2015, (11): 43-47.
[5] THONGKERD C, POOMPIEW N, CHINAAKATAKUL K, et al. Strain sensing enhancement of 3D-printed polyurethane through surface deposition of carbon black[J]. Materials Science Forum, 2024, 1128: 45-50.
doi: 10.4028/www.scientific.net/MSF
[6] ALJAWARNEH R Y A, CHE ZAIN M S, ZAKARIA F. Macroporous polymeric resin for the purification of flavonoids from medicinal plants: a review[J]. Journal of Separation Science, 2024, 47(15): e2400372.
[7] YUAN X H, SU Q, HAN L Y, et al. Preparation and performance of self-healing epoxy composites by microcapsulated approach[J]. Key Engineering Materials, 2014, 636: 73-77.
doi: 10.4028/www.scientific.net/KEM.636
[8] WANG W R, YU X L, CONG H L. Pressure evaluation of seamless yoga leggings designed with partition structure[J]. AUTEX Research Journal, 2023, 23(2): 300-309.
doi: 10.2478/aut-2021-0053
[9] WANG W R, CONG H L, DONG Z J, et al. Digital design model for weft-knitted seamless yoga pants based on skin deformation[J]. Journal Engineered Fibers and Fabrics, 2021, 16: 1558925021990503.
[10] LEE H, LEE Y J. Effects of bikram yoga clothes on EEG beta spectrum[J]. Fibres & Textiles in Eastern Europe, 2022, 30(6): 45-54.
[11] HRIDOY H M, HOSSAIN M P, ALI M H, et al. Alocasia macrorrhiza rhizome lectin inhibits growth of pathogenic bacteria and human lung cancer cell in vitro and Ehrlich ascites carcinoma cell in vivo in mice[J]. Protein Expression and Purification, 2024, 219: 106484.
doi: 10.1016/j.pep.2024.106484
[12] 赵雅杰, 丛洪莲, 张静, 等. 功能性锦纶针织瑜伽服面料创新开发与应用[J]. 纺织导报, 2021(12): 22-26.
HAO Yajie, CONG Honglian, ZHANG Jing. et al. Innovative development and application of functional nylon knitted yoga fabric[J]. China Textile Leader, 2021(12): 22-26.
[13] ZHU T T, WAN A L. Antibacterial and yellowing performances of sports underwear fabric with polyamide/silver ion polyurethane filaments[J]. AUTEX Research Journal, 2024, 24: 20230020.
[14] 陈慧娴, 鲁虹, 李书洋, 等. 运动文胸结构设计要素对穿着舒适性的影响[J]. 纺织学报, 2019, 40(9): 159-166.
CHEN Huixian, LU Hong, LI Shuyang, et al. The influence of structural design elements of sports bra on wearing comfort[J]. Journal of Textile Research, 2019, 40(9): 159-166.
[15] IGARASHI T L, FERNANDES T L, HERNANDEZ A J, et al. Behavior of skin temperature during incremental cycling and running indoor exercises[J]. Heliyon, 2022, 8(10): e10889.
doi: 10.1016/j.heliyon.2022.e10889
[16] 苗苗, 鲁虹, 程梦琪. 运动前后人体体表温度变化与主观热感觉评定[J]. 纺织学报, 2018, 39(4): 116-122.
MIAO Miao, LU Hong, CHENG Mengqi. Changes in body surface temperature and subjective thermal sensation assessment before and after exercise[J]. Journal of Textile Research, 2018, 39(4): 116-122.
[1] 刘楚, 张向辉, 张昭华, 牛文鑫, 王诗潭. 皮肤湿感觉的神经传导与脑区响应研究现状[J]. 纺织学报, 2025, 46(10): 247-254.
[2] 罗玉玲, 杨喜竹, 王星岚, 郑晓慧, 赵胜男, 常素芹. 以相变包为冷源的冷却服研究进展[J]. 纺织学报, 2025, 46(07): 253-261.
[3] 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185.
[4] 杨琪, 周晓钰, 季静, 戴宏钦. 化学防护服内湿度调节装置的设计与性能评价[J]. 纺织学报, 2025, 46(05): 262-269.
[5] 赵珂, 张恒, 程文胜, 甄琪, 步青云, 崔景强. 类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 51-60.
[6] 巫晓雯, 方蕾妹, 江昆, 丛洪莲. 基于热湿舒适性的横编全成形运动内衣的分区设计[J]. 纺织学报, 2024, 45(12): 172-179.
[7] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[8] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[9] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
[10] 刘青, 牛丽, 蒋高明, 马丕波. 仿鳞片结构织物的制备及其防刺性能[J]. 纺织学报, 2023, 44(11): 90-97.
[11] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[12] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[13] 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250.
[14] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[15] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!