纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 19-25.doi: 10.13475/j.fzxb.20250300101

• 纤维材料 • 上一篇    下一篇

聚对苯二甲酸丙二醇酯-聚四氢呋喃嵌段共聚物的合成与表征

董海良1,2,3, 卫婷3, 况军3, 陈烨1,2()   

  1. 1.东华大学 先进纤维材料全国重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院, 上海 201620
    3.中石化(上海)石油化工研究院有限公司, 上海 201208
  • 收稿日期:2025-02-21 修回日期:2025-08-14 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 陈烨(1982—),男,教授,博士。主要研究方向为高保形纤维及循环再生。E-mail:chenye@dhu.edu.cn
  • 作者简介:董海良(1988—),男,博士生。主要研究方向为生物基聚酯新材料。
  • 基金资助:
    上海市自然科学基金面上项目(24ZR1400200)

Synthesis and characterization of poly(trimethylene terephthalate)-block-poly(tetramethylene glycol) copolymers

DONG Hailiang1,2,3, WEI Ting3, KUANG Jun3, CHEN Ye1,2()   

  1. 1. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
  • Received:2025-02-21 Revised:2025-08-14 Published:2025-11-15 Online:2025-11-15

摘要:

针对以不同软硬段质量比合成的聚对苯二甲酸丙二醇酯嵌段聚四氢呋喃(PTT-b-PTMG)尚缺乏系统性研究的现状,采用直接酯化-熔融缩聚方法合成了系列不同硬度的PTT-b-PTMG共聚酯,借助红外光谱仪、核磁共振仪、凝胶渗透色谱仪、乌氏黏度计、差示扫描量热仪、热重分析仪、X射线衍射仪等仪器,对PTT-b-PTMG共聚酯的结构与性能进行表征。结果表明:随软段含量增加,PTT-b-PTMG共聚酯的特性黏度、分子量增加,分子序列结构中的PTT硬段链段长度变短,邵氏硬度、熔点、结晶温度下降,而所有共聚物在室温下都具有与均聚PTT 相同的晶体结构;随软段含量增加,拉伸强度、拉伸模量下降,断裂伸长率提升;共聚酯具有良好的热稳定性。

关键词: 聚对苯二甲酸丙二醇酯, 直接酯化, 软段含量, 嵌段共聚酯, 硬度, 分子序列结构, 热塑性聚酯弹性体

Abstract:

Objective To enrich the variety of traditional polybutylene terephthalate-based thermoplastic polyether ester elastomer and address the poor elastic recovery performance in the field of fiber materials, new types of thermoplastic polyether ester elastomer (TPEE) were synthesized by direct esterification and melt polycondensation using bio-based poly(trimethylene terephthalate) as hard segment contents, aiming to achieve a series of poly(trimethylene terephthalate)-block- poly(tetramethylene glycol) (PTT-b-PTMG)with different hardness. This study aims to investigate the effects of different soft segment contents on the structure and properties of PTT-b-PTMG, so as to provide support for the development and application of the thermoplastic polyether ester elastomer.
Method A series of PTT-b-PTMG copolymers with different hardness were synthesized by direct esterification melt polycondensation. The structure and properties of PTT-b-PTMG copolyesters were characterized by FT-IR, 1H-NMR, gel permeation chromatography (GPC), viscosity analyzer, differential scanning calorimeter (DSC), thermogravimetry (TG), wide-angle X-ray diffraction (WAXS), etc.
Results The results showed that PTT-b-PTMG copolyester was successfully synthesized evidenced by FT-IR, 1H-NMR, and GPC analysis and the soft segment mass fraction calculated by 1H-NMR spectra were close to the theoretical addition value.The influences of soft segment contents on the structure and properties of PTT-b-PTMG copolyesters were studied by changing the soft segment contents. The results showed that as the content of soft segments increase, the intrinsic viscosity and molecular weight of copolyesters increased with the increase of soft segments ratio from 0% to 60%. With the increase of soft segments content, the length of PTT hard segment segments in the molecular sequence structure decreased from 16.3 to 4.5, the elongation at break increased from 49% to 542%, the tensile strength decreased from 26 MPa to 13 MPa, the Young's modulus decreased from 2 012 MPa to 62 MPa and the Shore hardness decreased from 65 to 38. WAXS revealed that all copolymers had the same crystal structure of homo-PTT at room temperature. With the increase of soft segments content, melting point shifted from 223.2 ℃ to 178.7 ℃ with the enthalpy of melting decreased from 43.2 J/g to 16.2 J/g and crystallization temperature shifted from 178.0 ℃ to 132.5 ℃with the enthalpy of crystallization decreased from 49.0 J/g to 19.5 J/g. The thermal degradation performance showed that all copolyester had good thermal stability, with the increase of soft segments content, the residual carbon content decrease from 6.8% to 1.0%, when the content of soft segments is 60%, the thermal stability of the copolyester show better than other content, slightly worse than pure PTT.
Conclusion A series of PTT-b-PTMG copolyesters were successfully synthesized by direct esterification and melt polycondensation. The crystal structure of PTT-b-PTMG copolyesters was found to be consistent with that of PTT by WAXS. With the increase of soft segment content, the intrinsic viscosity and molecular weight of the copolyesters increased, the mean chain length of the hard segment PTT of the molecular sequence structure decreased, the hardness, melting point and crystallization temperature decreased, and the crystallization property deteriorated. The thermal stability results suggest that copolyesters have good thermal stability, and the residual carbon content decreases with the increase of soft segment content. In addition, the increase of soft segment content leads to the change of mechanical properties, the decrease of tensile strength and tensile modulus, and the increase of elongation at break. In this paper, the properties of PTT-b-PTMG with different proportion of soft and hard segments are studied. By changing the content of soft segments, the hardness, tensile modulus, elongation at break and other mechanical properties could be precisely controlled. This work provides more raw material options for the application in the field of TPEE elastic fiber materials.

Key words: poly(trimethylene terephthalate), direct esterification, soft segment content, block copolymer, hardness, molecular sequence structure, thermoplastic polyether ester elastomer

中图分类号: 

  • TQ334

图1

PTT-b-PTMG共聚酯的红外谱图"

图2

PTT-b-PTMG共聚酯的化学结构式"

图3

PTT-b-PTMG共聚酯的核磁谱图"

表1

PTT-b-PTMG共聚酯的物理性能"

样品
编号
WPTMG/% Mn ×103/
(g·mol-1)
Mw×103/
(g·mol-1)
Mw/Mn Ln
S0 38.6 71.3 1.84
S30 28.0 40.8 77.3 1.89 16.3
S40 39.4 42.2 79.4 1.84 9.4
S50 49.7 43.9 81.3 1.85 6.5
S60 61.1 46.6 82.9 1.78 4.5

图4

PTT-b-PTMG共聚酯的GPC谱图"

图5

PTT-b-PTMG共聚酯的黏度和邵氏硬度随软段质量分数的变化"

图6

PTT-b-PTMG共聚酯的二次升温DSC曲线"

图7

PTT-b-PTMG共聚酯的降温DSC曲线"

表2

PTT-b-PTMG共聚酯的热性能参数"

样品编号 Tm/℃ ΔHm(J·g-1) Tp/℃ ΔHc(J·g-1)
S0 223.2 43.2 178.0 49.0
S30 213.7 38.8 169.1 35.1
S40 209.5 32.2 165.1 35.0
S50 194.9 22.0 157.5 19.6
S60 178.7 16.2 132.5 19.5

图8

PTT-b-PTMG共聚酯的WAXS图"

表3

PTT-b-PTMG共聚酯的热稳定性能"

样品编号 T5%/℃ T25%/℃ T 50 %/℃ Tmax/℃ Wf/%
S0 367.5 388.0 399.3 399.7 6.8
S30 364.2 384.9 398.0 401.7 4.7
S40 361.7 386.5 399.2 402.7 3.1
S50 360.2 387.2 398.0 403.1 2.2
S60 365.0 388.8 401.0 405.0 1.0

图9

PTT-b-PTMG共聚酯的拉伸曲线"

表4

PTT-b-PTMG共聚酯的力学性能参数"

样品名称 拉伸模量/MPa 断裂强度/MPa 断裂伸长率/%
S0 2 012±3.2 26±0.3 49±10
S30 289±3.5 24±0.2 387±15
S40 178±2.6 21±0.3 353±13
S50 107±2.1 17±0.2 395±16
S60 62±2.3 13±0.5 542±14
[1] 张梦茹, 王灿, 肖汪洋, 等. 聚醚酯弹性纤维的制备及其结构与性能[J]. 纺织学报, 2024, 45(8): 81-88.
ZHANG Mengru, WANG Can, XIAO Wangyang, et al. Preparation of polyether ester elastic fiber and its structure and properties[J]. Journal of Textile Research, 2024, 45(8): 81-88.
[2] 何崎, 李军令, 靳高岭, 等. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(9): 70-75.
HE Qi, LI Junling, JIN Gaoling, et al. Preparation and properties of tetrahydrofuran homopolyether-polybutylene terephthalate/polyethylene terephthalate parallel composite fiber[J]. Journal of Textile Research, 2022, 43(9): 70-75.
[3] 王杰, 邢喜全, 何肖, 等. 不同软硬段含量PBT-b-PTMG嵌段共聚物的合成与性能[J]. 高分子材料科学与工程, 2023, 39(9): 27-34.
WANG Jie, XING Xiquan, HE Xiao, et al. Synthesis and properties of PBT-b-PTMG block copolymers with different soft and hard segment contents[J]. Polymer Materials Science & Engineering, 2023, 39(9): 27-34.
[4] JEON S H, JEONG J E, KIM S, et al. Hardness modulated thermoplastic poly(ether ester) elastomers for the automobile weather-strip application[J]. Polymers, 2021, 13(4): 525.
doi: 10.3390/polym13040525
[5] CHEN Z M, LIU Y, YAO C G, et al. The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers[J]. Polymer Testing, 2012, 31(5): 685-696.
doi: 10.1016/j.polymertesting.2012.03.008
[6] CHEN Z M, YAO C G, YANG G S. Nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/polyethylene glycol copolymers[J]. Polymer Testing, 2012, 31(3): 393-403.
doi: 10.1016/j.polymertesting.2011.12.001
[7] PIESOWICZ E, PASZKIEWICZ S, SZYMCZYK A. Phase separation and elastic properties of poly(trimethylene terephthalate)-block-poly(ethylene oxide) copolymers[J]. Polymers, 2016, 8(7): 237.
doi: 10.3390/polym8070237
[8] GAN Z Y, BING D X, QU S, et al. In situ synthesis of poly(ether ester) via direct polycondensation of terephthalic acid and 1, 3-propanediol with sulfonic acids as catalysts[J]. Polymer Chemistry, 2019, 10(26): 3629-3638.
doi: 10.1039/C9PY00550A
[9] PASZKIEWICZ S, SZYMCZYK A, ŠPITALSKY Z, et al. Structure and properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in situ polymerization[J]. European Polymer Journal, 2014, 50: 69-77.
doi: 10.1016/j.eurpolymj.2013.10.031
[10] 吴美琰, 施曼丽, 程友青, 等. 聚对苯二甲酸丁二酯-聚四亚甲基醚多嵌段共聚物的研究[J]. 高分子通讯, 1980, 11(2): 77-83.
WU Meiyan, SHI Manli, CHENG Youqing, et al. The study on poly (tetra-methylene terephthate)-poly(tetramethylene ether) multi-block copolymer[J]. Acta Polymerica Sinica, 1980, 11(2): 77-83.
[11] WANG B J, LI C Y, HANZLICEK J, et al. Poly(tri-methylene teraphthalate) crystal structure and morphology in different length scales[J]. Polymer, 2001, 42(16): 7171-7180.
doi: 10.1016/S0032-3861(01)00046-5
[12] 吴华志. 热塑性聚酯弹性体TPEE的热性能研究[J]. 合成技术及应用, 2024, 39(3): 43-48.
WU Huazhi. Study on thermal properties of thermoplastic polyester elastomer TPEE[J]. Synthetic Technology & Application, 2024, 39(3): 43-48.
[1] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[2] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[3] 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15.
[4] 王少博, 肖阳, 黄鑫, 李增贝. 生物基聚对苯二甲酸丙二醇酯纤维制备技术的研究进展[J]. 纺织学报, 2021, 42(04): 16-25.
[5] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[6] 王晶晶, 陈咏, 王朝生, 王华平, 边树昌, 乌婧. 生物基聚对苯二甲酸丙二醇酯低聚物的提取及其热性能[J]. 纺织学报, 2020, 41(06): 1-7.
[7] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[8] 季广建 聂玲燕 陆信曜 宗红 宋健 方慧英 诸葛斌. 碳源对克氏菌合成PTT原料PDO的影响及对DhaB的表达调控[J]. 纺织学报, 2014, 35(8): 144-0.
[9] 秦艳分 沈金科 周翔 李邵波 王秀华. 相容剂对PP/TPEE共混物动态流变性能影响[J]. 纺织学报, 2013, 34(9): 1-0.
[10] 倪永 刘志红 胡腾蛟. PET、PTT与PBT材料的定性与定量鉴别方法[J]. 纺织学报, 2012, 33(10): 28-32.
[11] 刘德驹;张伟;张艳. PLA/棉/PTT包芯纱针织物低温一浴法染色[J]. 纺织学报, 2010, 31(11): 83-89.
[12] 缪旭红;葛明桥. 衬垫用经编间隔织物的压陷性能[J]. 纺织学报, 2009, 30(05): 43-47.
[13] 鲍正红;朱世根;丁浩;狄平. 回火工艺对织针弹性及硬度的影响[J]. 纺织学报, 2008, 29(4): 119-122.
[14] 李建华;刘英;张启峰. 纺杯镍磷人造金刚石复合化学镀研究[J]. 纺织学报, 2002, 23(05): 47-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!