纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 1-6.doi: 10.13475/j.fzxb.20180607806

• 纤维材料 •    下一篇

改性菠萝叶纤维结构及其吸附甲醛性能

何俊燕, 李明福(), 张劲, 庄志凯, 连文伟   

  1. 中国热带农业科学院 农业机械研究所, 广东 湛江 524091
  • 收稿日期:2018-06-25 修回日期:2019-01-04 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 李明福
  • 作者简介:何俊燕(1983—),女,助理研究员,硕士。主要研究方向为热带农业废弃物材料利用。
  • 基金资助:
    广东省自然科学基金项目(2016A030307001);中国热带农业科学院基本科研业务费专项资金项目(1630132017008);中国热带农业科学院基本科研业务费专项资金项目(1630062015014);中国热带农业科学院基本科研业务费专项资金项目(1630132018002);湛江市科技计划项目(2017A03015)

Structure and formaldehyde adsorption properties of modified pineapple leaf fiber

HE Junyan, LI Mingfu(), ZHANG Jin, ZHUANG Zhikai, LIAN Wenwei   

  1. Institute of Agricultural Machinery, Chinese Academy of Tropical Agricultural Sciences,Zhanjiang, Guangdong 524091, China
  • Received:2018-06-25 Revised:2019-01-04 Online:2019-05-15 Published:2019-05-21
  • Contact: LI Mingfu

摘要:

为获得具有高吸附性能的纺织材料,以脱胶菠萝叶纤维为吸附载体,氯化血红素为改性剂,经酯化反应制备了改性菠萝叶纤维。借助扫描电子显微镜、傅里叶红外光谱仪、X射线衍射仪、比表面积及孔径分析仪对改性菠萝叶纤维结构进行表征,并研究其吸附甲醛性能。结果表明:改性菠萝叶纤维表面接枝了氯化血红素,属于Ⅰ型纤维素,其相对结晶度由69.3%下降到66.2%;改性菠萝叶纤维的氮气吸附等温线属于Ⅲ型吸附,有少量孔径为2.0~276.1 nm的中孔与大孔,其比表面积、氮气吸附量、滞后环均变小;改性菠萝叶纤维对甲醛的吸附性好于菠萝叶纤维,其吸附甲醛性能随着甲醛初始浓度的增加而降低,随着纤维用量、反应温度和反应时间的增加而提高。

关键词: 脱胶菠萝叶纤维, 接枝改性, 氯化血红素, 吸附性能, 甲醛

Abstract:

In order to obtain high-absorption textile materials, the modified materials of degummed pineapple leaf fiber were prepared by esterification reaction using degummed pineapple leaf fiber as an adsorption carrier and hemin as modifier. The structure of the fiber was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer, surface area and porosimetry analyzer, and the formaldehyde adsorption properties were also studied. The results show that the surface of the modified fiber is grafted with hemin. It has the crystal structure of cellulose I. The relative crystallinity is decreased from 69.3% to 66.2%. The N2 adsorption isotherm belongs to type III adsorption. The modified fibers have a small number of mesopores and macropores with pore size ranged from 2.0 to 276.1 nm. The specific surface area, nitrogen adsorption and hysteresis loop are all decreased after modification. The modified degummed pineapple leaf fiber has better formaldehyde adsorption performance than the unmodified fiber. The formaldehyde adsorption capability of modified fiber decreases with the increase of the initial formaldehyde concentration, and increases with the increase of fiber dosage, reaction temperature and reaction time.

Key words: degummed pineapple leaf fiber, grafting modification, hemin, adsorption, formaldehyde

中图分类号: 

  • TS102.6

图1

菠萝叶纤维改性前后的表面形态(×10 000)"

图2

菠萝叶纤维改性前后的红外光谱图"

图3

菠萝叶纤维改性前后的X射线衍射图"

图4

菠萝叶纤维改性前后的氮气吸附-脱附等温线"

表1

菠萝叶纤维改性前后的孔结构"

样品名称 比表面积/
(m2·g-1)
孔体积/
(cm3·g-1)
平均孔直径/
nm
菠萝叶纤维 0.73 0.01 25.52
改性菠萝叶纤维 0.71 0.01 26.50

图5

菠萝叶纤维改性前后的孔径分布"

图6

甲醛初始质量浓度对改性前后菠萝叶纤维甲醛去除率的影响"

图7

纤维用量对甲醛去除率的影响"

图8

反应温度对甲醛去除率的影响"

图9

反应时间对甲醛去除率的影响"

[1] KLEPEIS N E, NELSON W C, OTT W R, et al. The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants[J]. Journal of Exposure Analysis and Environmental Epidemiology, 2001,11(3):231-252.
doi: 10.1038/sj.jea.7500165 pmid: 11477521
[2] 陈冰冰. 甲醛的“存储-氧化”脱除与室温催化氧化[D]. 大连:大连理工大学, 2013: 2.
CHEN Bingbing. Catalytic formaldehyde removal by ″storage-oxidation″ cycling process and catalytic oxidation at room temperature[D]. Dalian: Dalian University of Technology, 2013: 2.
[3] 姜传佳, 李申屾, 张彭义, 等. 北京市某家具城室内空气污染水平与特征[J]. 环境科学, 2010,31(12):2860-2865.
JIANG Chuanjia, LI Shenshen, ZHANG Pengyi, et al. Level and characteristics of indoor air pollutants in a furniture mall in Beijing[J]. Environmental Science, 2010,31(12):2860-2865.
[4] 王琨, 李文朴, 欧阳红, 等. 室内空气污染及其控制措施的比较研究[J]. 哈尔滨工业大学学报, 2004,36(4):493-496.
WANG Kun, LI Wenpu, OUYANG Hong, et al. Indoor air pollution and it's control strategies[J]. Journal of Harbin Institute of Technology, 2004,36(4):493-496.
[5] TANG Xiaojiang, BAI Yang, DUONG Anh, et al. Formaldehyde in China: production, consumption, exposure levels, and health effects[J]. Environment International. 2009,35(8):1210-1224.
doi: 10.1016/j.envint.2009.06.002 pmid: 19589601
[6] 李新茹. 浅谈室内甲醛污染的危害与防治[J].焦作大学学报, 2007(4):83-84.
LI Xinru. Discussion on hazards and prevention of indoor formaldehyde pollution[J]. Journal of Jiaozuo University, 2007(4):83-84.
[7] 沈海蓉. 室内甲醛气体净化功能纤维的制备与表征[D]. 上海:东华大学, 2009: 3-12.
SHEN Hairong. Preparation and characterization of functional fibers in indoor formaldehyde decontamina-tion[D]. Shanghai: Donghua University, 2009: 3-12.
[8] HU Maocong, YAO Zhenhua, LIU Xuguang, et al. Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/ hydroxyapatite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,85(4):91-97.
[9] YANG Dong, LIU Yankun, ZHANG Junpeng, et al. Experimental study on microwave modified AC and its adsorption on formaldehyde[J]. Procedia Engineering, 2017,205:3755-3762.
[10] 刘恩平, 郭安平, 郭运玲. 菠萝叶纤维酶法脱胶技术[J]. 纺织学报, 2006,27(12):41-43.
LIU Enping, GUO Anping, GUO Yunling. Study on enzymatic degumming of pineapple leaf fiber[J]. Journal of Textile Research, 2006,27(12):41-43.
[11] 郁崇文, 张元明, 姜繁昌. 菠萝纤维的纺纱工艺研究[J]. 纺织学报, 2000,21(6):352-354.
YU Chongwen, ZHANG Yuanming, JIANG Fanchang. Study on spinning process of pineapple leaf fiber[J]. Journal of Textile Research, 2000,21(6):352-354.
[12] 连文伟, 张劲, 刘恩平, 等. 脱胶方法对菠萝叶纤维结构和性能的影响[J]. 上海纺织科技, 2011,39(4):56-59.
LIAN Wenwei, ZHANG Jin, LIU Enping, et al. Study on the effect of degumming methods on structure and properties of pineapple leaf fiber[J]. Shanghai Textile Science & Technology, 2011,39(4):56-59.
[13] 黄涛, 张劲, 刘恩平, 等. 菠萝叶纤维生化脱胶纤维性质研究[J]. 江苏农业科学, 2011,39(4):329-331.
HUANG Tao, ZHANG Jin, LIU Enping, et al. Study on the properties of pineapple leaf fiber by biochemical degumming[J]. Jiangsu Agricultural Sciences, 2011,39(4):329-331.
[14] 黄小华, 沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006,27(1):75-77.
HUANG Xiaohua, SHEN Dingquan. Degumming and dyeing of pineapple leaf fiber[J]. Journal of Textile Research, 2006,27(1):75-77.
[1] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[2] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[5] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[6] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[7] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[8] 韩健健, 胡勇杰, 胡敏专. 基于纳滤技术的质检萃取液脱色预处理方法[J]. 纺织学报, 2019, 40(09): 136-142.
[9] 张义安, 狄剑锋. 光催化剂负载酰肼基活性炭除甲醛材料的制备[J]. 纺织学报, 2019, 40(03): 109-117.
[10] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[11] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
[12] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[13] 陈莉 邹龙 孙卫国. 废弃亚麻热解处理吸油材料的制备及其吸附性能[J]. 纺织学报, 2017, 38(06): 17-22.
[14] 黄张秘 周翔 邢志奇 张文龙. 棉织物的聚羧酸无甲醛免烫整理[J]. 纺织学报, 2017, 38(01): 94-99.
[15] 刘玉森 陈莉 王驰. 稻秸秆纤维对Cu(Ⅱ)的吸附性能[J]. 纺织学报, 2016, 37(06): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!