纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 58-63.doi: 10.13475/j.fzxb.20180601306

• 染整与化学品 • 上一篇    下一篇

羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响

安芳芳1, 房宽峻1,2(), 刘秀明1, 蔡玉青3, 韩双1, 杨海贞1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.山东生态纺织协同创新中心,山东 青岛 266071
    3.青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2018-06-01 修回日期:2019-01-21 出版日期:2019-06-15 发布日期:2019-06-25
  • 通讯作者: 房宽峻
  • 作者简介:安芳芳(1993—),女,博士生。主要研究方向为纺织品喷墨印花技术。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309800)

Effect of wool fabric protease modification on droplet spreading and color performance

AN Fangfang1, FANG Kuanjun1,2(), LIU Xiuming1, CAI Yuqing3, HAN Shuang1, YANG Haizhen1   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, Shandong 266071, China
    3. School of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2018-06-01 Revised:2019-01-21 Online:2019-06-15 Published:2019-06-25
  • Contact: FANG Kuanjun

摘要:

为探讨羊毛织物经蛋白酶改性后表面性能变化对喷墨印花中常用活性染料墨滴铺展和颜色性能影响,使用蛋白酶Savinase 16L处理羊毛织物,观察了墨滴在织物表面变化。借助接触角测量仪、冷场发射扫描电子显微镜和X射线光电子能谱对未处理和蛋白酶处理后织物的润湿性能、物理形貌和化学组成进行分析。结果表明:蛋白酶改性后织物表面鳞片被刻蚀,纤维结构变得疏松,润湿性能提高;相对于未改性羊毛,改性后羊毛表面不同颜色活性染料墨滴铺展时间和铺展面积均明显减小,以浅红色墨滴为例,铺展时间和铺展面积分别减小了54.8%和19.1%;此外,蛋白酶处理导致纤维表面蛋白质显现程度增加,使得更多的活性染料分子同纤维表面氨基基团共价结合,织物表观得色深度和色彩鲜艳度提高。

关键词: 羊毛织物, 喷墨印花, 蛋白酶改性, 表面性能, 墨滴铺展, 颜色性能

Abstract:

In order to investigate the influence of the surface performance of the modified wool fabrics on reactive dye ink droplets spreading and color properties, protease Savinase 16L was used for treating wool fabrics, and the spreading of ink droplets on fabrics and colorimetric values were observed. The contact angle measuring instrument, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were adopted to analyze the wettability, morphology and chemical composition of wool fabrics. The results show that the surface scales of wool fibers are etched, the fiber structure becomes loose, and the wettability is improved after the protease modification. The spreading time and area of reactive dye droplets with different colors on the fabrics are significantly shorter and smaller than those of unmodified fabrics. Taking light red ink droplets as an example, the droplets spreading time and area on the protease treated fabrics decrease by 54.8% and 19.1%, respectively. In addition, more proteins are exposed to the wool fiber surface after the protease treatment, allowing more reactive dye molecules to covalently bond with the amino groups on the fiber surface, thereby improving the color depth and color saturation of wool fabric.

Key words: wool fabric, inkjet printing, protease modification, surface property, ink droplet spreading, color performance

中图分类号: 

  • TS194.4

表1

蛋白酶改性对墨滴铺展时间和铺展面积的影响"

浸轧次数 酶处理时间/s 铺展时间/s 铺展面积/mm2
0 0 42.0 80.0
1 40 37.0 74.6
2 80 34.0 72.5
3 120 30.0 71.1
4 160 24.0 67.1
5 200 19.0 64.7

表2

蛋白酶改性对墨滴颜色性能的影响"

浸轧
次数
酶处理
时间/s
L* a* b* C* h° K/S
0 0 45.9 42.0 -6.0 42.5 351.9 5.5
1 40 42.4 43.1 -5.5 43.4 354.2 7.7
2 80 41.5 44.4 -5.3 44.5 355.1 9.2
3 120 40.3 45.3 -5.1 45.5 354.7 10.0
4 160 39.0 46.0 -4.7 46.6 355.4 10.8
5 200 38.6 47.3 -3.9 47.5 355.8 11.5

表3

墨滴铺展及颜色参数"

墨水 织物 铺展时间/s 铺展面积/mm2 L* a* b* C* h° K/S
青色 未处理 35 69.5 62.0 -27.4 -15.6 31.5 209.6 4.4
处理后 16 50.0 50.8 -27.7 -22.2 35.5 218.7 12.5
品红 未处理 37 78.3 54.3 42.2 -6.9 42.8 350.8 4.8
处理后 14 57.2 34.8 49.1 -0.8 49.2 359.2 13.7
黄色 未处理 29 42.1 75.5 -4.7 47.1 47.4 95.7 3.8
处理后 14 37.5 68.7 0.4 64.1 54.1 89.6 9.4
黑色 未处理 35 42.4 41.1 5.2 0.4 5.3 251.7 5.6
处理后 15 33.9 23.0 2.0 -0.4 2.0 250.3 14.9

表4

蛋白酶改性对羊毛织物润湿性能的影响"

浸轧次数 酶处理时间/s 接触角/(°)
0 0 125.0
1 40 122.3
2 80 117.1
3 120 116.5
4 160 114.7
5 200 112.6

图1

羊毛表面形态SEM照片(× 2 000)"

表5

蛋白酶改性前后羊毛表面元素分析"

元素 结合能/eV 含量/%
改性前 改性后
C 285.0 65.9 64.1
O 531.8 20.4 20.2
N 398.4 5.2 8.6
S 164.0 2.3 1.4
Si 102.4 6.2 5.7
N与C元素比 - 7.9 13.4
O与C元素比 - 31.0 31.5
[1] 房宽峻. 数字喷墨印花技术[M]. 北京: 中国纺织出版社, 2008: 11-14.
FANG Kuanjun. Digital Inkjet Printing Technology[M]. Beijing: China Textile & Apparel Press, 2008: 11-14.
[2] LIU Z D, FANG K J, GAO H G, et al. Effect of cotton fabric pretreatment on drop spreading and colour performance of reactive dye inks[J]. Coloration Technology, 2016,132(5):407-413.
[3] 房宽峻, 刘尊东, 陈伟, 等. 棉织物表面处理对活性染料喷墨印花的影响[J]. 纺织学报, 2015,36(2):128-132.
FANG Kuanjun, LIU Zundong, CHEN Wei, et al. Effect of fabric surface treatment on ink jet printing with reactive dyes[J]. Journal of Textile Research, 2015,36(2):128-132.
[4] MERT M, KIRAL E. Influence of internal lipid on dyeing of wool fibers[J]. Textile Research Journal, 2010,80(4):365-373.
[5] KANTOUTH A, KANTOUTH F, EL-SAYED H. Surface modification of wool fabric for printing with acid and reactive dyes[J]. Coloration Technology, 2010,122(4):213-216.
[6] 安亚洁, 李敏, 杜长森, 等. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018,39(4):87-92.
AN Yajie, LI Min, DU Changsen, et al. Diffusion behavior of micro droplet on silk woven fabrics[J]. Journal of Textile Research, 2018,39(4):87-92.
[7] 关芳兰, 夏婧菁. 羊毛织物数码印花工艺研究[J]. 毛纺科技, 2009,37(3):31-34.
GUAN Fanglan, XIA Jingjing. Study on ink-jet printing process of wool fabric[J]. Wool Textile Journal, 2009,37(3):31-34.
[8] 董利光. 羊毛织物数码印花工艺研究[D]. 北京: 北京服装学院, 2010: 42-60.
DONG Liguang. Research on ink jet printing process of wool fabrics[D]. Beijing: Beijing Institute of Fashion, 2010: 42-60.
[9] 朱强. 羊毛织物数码喷墨印花技术的研究[D]. 苏州:苏州大学, 2015: 38-58.
ZHU Qiang. Studies on the digital ink-jet printing wool fabric[D]. Suzhou: Soochow University, 2015: 38-58.
[10] 朱卫华, 刘义东, 陈世军. 经常压等离子体预处理后羊毛织物的数码印花工艺[J]. 毛纺科技, 2018,46(5):37-41.
ZHU Weihua, LIU Yidong, CHEN Shijun. Study on digital printing technology of wool fabric after pretreatment with the normal pressure plasma[J]. Wool Textile Journal, 2018,46(5):37-41.
[11] EL-SAYED H, EL-KHATIB E. Modification of wool fabric using ecologically acceptable UV-assisted treatments[J]. Journal of Chemical Technology & Biotechnology, 2005,80(10):1111-1117.
[12] MOJSOV K. Enzymatic treatment of wool fabrics- opportunity of the improvement on some physical and chemical properties of the fabrics[J]. Journal of the Textile Institute Proceedings & Abstracts, 2017,108(7):1136-1143.
[13] WANG P, WANG Q, FAN X, et al. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics[J]. Enzyme & Microbial Technology, 2009,44(5):302-308.
[14] ONAR N, SARIIŞIK M. Use of enzymes and chitosan biopolymer in wool dyeing[J]. Fibres & Textiles in Eastern Europe, 2005,13(1):54-59.
[15] WANG L, YAO J B, LIU J Y, et al. Study on rapid wool shrinkproof method based on protease treat-ment[J]. Key Engineering Materials, 2016,671:324-330.
[16] YIN X M, LIU J Y, YAO J B, et al. Application of synergetic protease catalytic system in wool treat-ment[J]. Key Engineering Materials, 2015,671:19-24.
[17] 刘建勇, 吴胜争, 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018,39(1):71-78.
LIU Jianyong, WU Shengzheng, ZHAO Xiaokang. Biological enzyme synergistic catalytic system and its mechanism on wool fiber[J]. Journal of Textile Research, 2018,39(1):71-78.
[18] JOKO K, YOSHIKASTU Y, SAKATA K. Function of the cell membrane complex on dyeing of wool fibers with oxidation dye[J]. Seni Gakkaishi, 2006,62(12):280-286.
[19] BAI R, YU Y, WANG Q, et al. Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric[J]. Fibers and Polymers, 2016,17(10):1613-1620.
[20] BULUT M O, SANA N H. Modification of woolen fabric with plasma for a sustainable production[J]. Fibers and Polymers, 2018,19(9):1887-1897.
[21] DING C, YU J, CHEN W. The structure and properties of wool treated with a reversed-phase microemulsion containing aqueous alkali[J]. Textile Research Journal, 2016,88(3):254-260.
[22] FERRERO F, MOSSOTTI R, INNOCENTI R, et al. Enzyme-aided wool dyeing: influence of internal lipids[J]. Fibers and Polymers, 2015,16(2):363-369.
[1] 侯学妮, 陈国强, 邢铁玲. 活性墨水流体特性对喷射性能的影响[J]. 纺织学报, 2020, 41(03): 91-99.
[2] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[3] 杨海贞 房宽峻 刘秀明 蔡玉青 安芳芳 韩双. 喷墨印花预处理对织物组织结构的影响 [J]. 纺织学报, 2019, 40(05): 84-90.
[4] 田全慧 顾萍 朱明. 波段分区的数码喷墨印花机光谱特性化模型[J]. 纺织学报, 2019, 40(04): 140-144.
[5] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[6] 任燕飞 巩继贤 付冉冉 张健飞 王富邦 陶宇庆. 微生物合成纳米灵菌红素及其对羊毛织物抗菌染色[J]. 纺织学报, 2018, 39(02): 91-96.
[7] 孟一丁 邵建中 黄益 王成龙 孙广东. 一体化聚氨酯丙烯酸酯的合成及其在光固化数码印花中的应用[J]. 纺织学报, 2018, 39(02): 97-105.
[8] 陈诚 贾丽霞 张初阳. 毛用防蛀萘醌色素的合成与性能评价[J]. 纺织学报, 2017, 38(10): 70-74.
[9] 韦玉辉 宁琳 吴雄英 丁雪梅. 家用干衣机滚筒烘干方式对羊毛织物性能的影响[J]. 纺织学报, 2017, 38(07): 69-74.
[10] 任燕飞 巩继贤 张健飞 付冉冉 王富邦. 茶色素染液pH值对羊毛织物染色效果及抗菌性能的影响[J]. 纺织学报, 2016, 37(11): 86-91.
[11] 王大同 张丽平 李敏 谭莹 付少海. 喷墨参数对包覆颜料墨水印花清晰度的影响[J]. 纺织学报, 2016, 37(08): 72-76.
[12] 吕继红 鄢友娟 汝新伟 肖红. 军警迷彩图案和面料印花技术的特点及发展[J]. 纺织学报, 2015, 36(02): 158-163.
[13] 付少海 王大同 杜长森 张丽平 关玉 许翠玲. 提高喷墨印花颜料墨水印花牢度的方法[J]. 纺织学报, 2015, 36(02): 141-147.
[14] 房宽峻 刘尊东 陈伟 张健飞 刘秀明 蔡玉青. 棉织物表面处理对活性染料喷墨印花的影响[J]. 纺织学报, 2015, 36(02): 128-132.
[15] 甄莉莉 付小蓉 程坚 黄丹 . 经壳聚糖季铵盐整理的羊毛织物酸性染料染色性能[J]. 纺织学报, 2014, 35(8): 59-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!