纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 44-49.doi: 10.13475/j.fzxb.20210310006

• 纤维材料 • 上一篇    下一篇

导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响

徐晓彤1, 江振林1,2,3(), 郑钦超1, 朱科宇1, 王朝生3, 柯福佑3   

  1. 1.上海工程技术大学 化学化工学院, 上海 201620
    2.上海工程技术大学 微纳制造先进材料研究中心, 上海 201620
    3.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2021-03-29 修回日期:2021-10-21 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 江振林
  • 作者简介:徐晓彤(1994—),女,硕士生。主要研究方向为环境友好高分子材料。
  • 基金资助:
    上海市“扬帆计划”人才项目(19YF1417800)

Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate

XU Xiaotong1, JIANG Zhenlin1,2,3(), ZHENG Qinchao1, ZHU Keyu1, WANG Chaosheng3, KE Fuyou3   

  1. 1. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Research Center for Advanced Mirco-and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
    3. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-03-29 Revised:2021-10-21 Published:2022-03-15 Online:2022-03-29
  • Contact: JIANG Zhenlin

摘要:

针对聚对苯二甲酸乙二醇酯(PET)中的导热结构会影响纤维材料加工成形、纺织品加工过程以及纤维性能的问题,通过熔融共混法分别制备得到含有碳纳米管、石墨烯的PET复合材料,借助差示扫描量热仪对PET的非等温结晶动力学进行研究。结果表明:掺杂的碳纳米管、石墨烯在PET中起成核剂作用,其质量分数的增加对PET的结晶温度、结晶速率及结晶度具有促进作用;由Kissinger方程计算得到的纯PET和掺杂碳纳米管、石墨烯的PET复合材料的结晶活化能分别为-95.23、-160.27和-176.79 kJ/mol,结晶活化能的绝对值增加促进大分子分子链运动而使结晶过程放热加快;碳纳米管、石墨烯对PET的结晶速率、成核具有促进作用,其中石墨烯的二维片状导热结构对PET的结晶更有利。

关键词: 聚对苯二甲酸乙二醇酯, 石墨烯, 碳纳米管, 非等温结晶动力学, 导热结构

Abstract:

The thermal conductive structure in polyethylene terephthalate will affect the processability of fiber materials and textiles, and various properties of the fiber. Polyethylene terephthalate (PET) composite containing carbon nanotubes (CNTs) and graphene (GR) was prepared by fusion mixing, and the non-isothermal crystallization kinetics of PET was studied by differential scanning calorimetry. The results show that doped carbon nanotubes and graphene act as nucleators in PET, and the increase in their mass fraction promotes the crystallization temperature, crystallization rate and crystallinity. The crystalline activation energies of pure PET, PETs doped with carbon nanotubes and graphene were -95.23、-160.27 and -176. 79 kJ/mol, respectively, calculated using Kissinger method. The increase of the absolute value of crystallization activation energy promotes the movement of macromolecule chain and accelerates the exothermic process of crystallization. The results show that CNTs and GR promote the crystallization rate and nucleation of PET, and the 2-D sheet thermal conductivity of graphene favors PET crystallization.

Key words: polyethylene terephthalate, graphene, carbon nanotube, non-isothermal crystallization kinetics, thermal conductive structure

中图分类号: 

  • TQ342

图1

PET、PET/CNTs和PET/GR的非等温结晶DSC曲线"

表1

PET、PET/CNTs和PET/GR的非等温结晶参数"

样品名称 Φ/(℃·min-1) T0/℃ Te/℃ Tp/℃ t/min t1/2/min ΔHc/(J·g-1)
PET 10 206.29 178.71 196.29 28.12 24.12 44.88
20 197.66 159.33 183.35 23.04 21.20 41.66
30 192.28 142.29 174.27 21.44 19.45 42.20
PET/CNTs 10 212.55 193.47 205.76 26.51 23.13 44.40
20 204.54 177.06 195.57 22.33 19.61 42.70
30 202.20 173.73 193.26 19.11 18.38 44.00
PET/GR 10 209.21 188.29 202.64 26.23 23.09 44.28
20 202.75 179.17 195.10 21.67 19.64 44.97
30 198.66 173.47 190.70 19.86 18.52 44.83

图2

相对结晶度与温度的关系曲线"

图3

相对结晶度与时间的关系曲线"

图4

PET、PET/CNTs和PET/GR在不同温度下的Ozawa指数m和lgK(T)曲线"

图5

PET,PET/CNTs和PET/GR的非等温结晶活化能"

表2

不同添加量的CNTs/PET、GR/PET结晶活化能"

质量分数/% ΔE/(kJ·mol-1)
PET/CNTs PET/GR
0.25 -160.27 -176.79
1.00 -133.11 -187.32
2.00 -127.80 -132.65
[1] 叶静. PET/纳米矿物粒子纤维的结构与性能[J]. 纺织学报, 2009,30(1):22-25.
YE Jing. Structure and properties of PET/nano-mineral particle fibers[J]. Journal of Textile Research, 2009,30(1):22-25.
[2] 林启松, 江力, 汪凯, 等. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018,39(8):22-26.
LIN Qisong, JIANG Li, WANG Kai, et al. Preparation and properties of new modified polyester[J]. Journal of Textile Research, 2018,39(8):22-26.
[3] 徐阳, 王肖娜, 杜远之, 等. 静电和熔融纺丝法对PET纤维表面结构的影响[J]. 纺织学报, 2012,33(9):1-5.
XU Yang, WANG Xiaona, DU Yuanzhi, et al. Effect of electrostatic and melt spinning methods on the surface structure of PET fibers[J]. Journal of Textile Research, 2012,33(9):1-5.
doi: 10.1177/004051756303300101
[4] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020,41(3):100-105.
DING Fang, REN Xuehong. Flame retardant finishing of polyester fabric with phosphorus and nitrogen flame retardant[J]. Journal of Textile Research, 2020,41(3):100-105.
[5] 王利娜, 石素宇, 辛长征, 等. 聚酯/棕榈基多孔碳纤维杂化膜的结晶和力学性能[J]. 纺织学报, 2017,38(8):6-10.
WANG Lina, SHI Suyu, XIN Changzheng, et al. Crystallization and mechanical properties of polyester/palm-based porous carbon fiber hybrid films[J]. Journal of Textile Research, 2017,38(8):6-10.
[6] 李绍龙, 徐艺, 陈农田, 等. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018,32(16):2882-2888, 2896.
LI Shaolong, XU Yi, CHEN Nongtian, et al. Non-isothermal crystallization kinetics of poly(butylene succinate)-b-poly(diethylene glycol succinate) mulitiblock copolymers by the Avrami and the Mo's methods exclusively[J]. Materials Review, 2018,32(16):2882-2888,2896.
[7] 韩霞, 郭英. PET/PE共混纤维纺丝组件的结构与性能[J]. 纺织学报, 2014,35(7):123-127.
HAN Xia, GUO Ying. Structure and properties of PET/PE blend fiber spinning assembly[J]. Journal of Textile Research, 2014,35(7):123-127.
[8] 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019,40(10):13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Polymerization kinetics and properties of copolymerized phosphorous flame-retardant polyester[J]. Journal of Textile Research, 2019,40(10):13-19.
[9] 王佳乐, 陈晓勇, 郜澳龙, 等. 低密度聚乙烯/石墨烯纳米复合材料非等温结晶动力学[J]. 工程塑料应用, 2021,49(1):102-106,113.
WANG Jiale, CHEN Xiaoyong, GAO Aolong, et al. Non-isothermal crystallization kinetics of low density polyethylene/graphene nanocomposites[J]. Engineering Plastics Application, 2021,49(1):102-106,113.
[10] XU Q S, WANG C S, WANG B, et al. In situ polymerization and characterization of graphite nanoplatelet/poly(ethylene terephthalate)nanocomposites for construction of melt-spun fibers[J]. RSC Advances, 2017,7(53):33477-33485.
doi: 10.1039/C7RA04770C
[11] XIE F, LIANG H, REN X J, et al. Isothermal crystallization of PET/PTT/CNTs composites[J]. Adv Mater, 2013,4:750-752.
[12] COBURN N, DOUGLAS P, KAYA D, et al. Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene)and MWCNTs[J]. Advanced Industrial and Engineering Polymer Research, 2018,1(1):99-110.
doi: 10.1016/j.aiepr.2018.06.001
[13] TUGAY Y, MEHMET K, GURALP O. Non-isothermal crystallization kinetics of poly (butylene succinate)(PBS)nanocomposites with different modified carbon nano-tubes[J]. Polymer, 2018,146:361-377.
doi: 10.1016/j.polymer.2018.05.060
[14] LIU F Y, XU C L, ZENG J B, et al. Non-isothermal crystallization kinetics of biodegradable poly (butylene succinate-co-diethylene glycol succinate)copolymers[J]. Thermochimica Acta, 2013,568:38-45.
doi: 10.1016/j.tca.2013.06.025
[15] GAO C H, JIAN X R, ZHANG B, et al. Effect of magnesium hydroxide sulfate hydrate whisker on non-isothermal crystallization kinetics of poly (butylene succinate)[J]. Thermochimica Acta, 2018,663:9-18.
doi: 10.1016/j.tca.2018.02.016
[16] JURGEN E K, SCHAWE. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics[J]. Polymer, 2019,167:167-175.
doi: 10.1016/j.polymer.2019.02.011
[17] AMBROSI M, RAUDINO I, DIANEZ I M. Non-isothermal crystallization kinetics and morphology of poly(3-hydroxybutyrate)/pluronic blends[J]. European Polymer Journal, 2019,120:109189.
doi: 10.1016/j.eurpolymj.2019.08.016
[18] HOU Y B, QIU S L, HU Y, et al. Construction of bimetallic ZIF-derived Co-Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin[J]. ACS Applied Materials & Interfaces, 2018,10(21):18359-18371.
[19] 姬洪, 宋明根, 薛勇, 等. 不同分子质量阻燃共聚酯的非等温结晶动力学[J]. 合成纤维, 2021,50(1):1-5.
JI Hong, SONG Minggen, XUE Yong, et al. Non-isothermal crystallization kinetics of flame-retardant copolyesters with different molecular weight[J]. Synthetic Fiber in China, 2021,50(1):1-5.
[20] 文健. 氧化石墨烯/尼龙6复合材料结晶动力学及增韧改性研究[D]. 广州:华南理工大学, 2019:1-30.
WEN Jian. Crystallization kinetics and toughening modification of graphene oxide/nylon 6 composites[D]. Guangzhou: South China University of Technology, 2019:1-30.
[1] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[2] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
[3] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[4] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[5] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[6] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[7] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[8] 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155.
[9] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[10] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[11] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
[12] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[13] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[14] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[15] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!