纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 124-131.doi: 10.13475/j.fzxb.20220202508

• 染整与化学品 • 上一篇    下一篇

复合型无氟聚丙烯酸酯乳液的制备及其防水性能

刘欣宇1,2, 李剑浩3, 王震1,4, 沈军炎2, 杨雷1,2()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312033
    3.浙江科峰有机硅股份有限公司, 浙江 嘉兴 314423
    4.浙江理工大学桐乡研究院有限公司, 浙江 嘉兴 314599
  • 收稿日期:2022-02-18 修回日期:2022-09-16 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 杨雷(1975—),男,教授,博士。主要研究方向为功能纺织助剂设计与开发。E-mail:yanglei@zstu.edu.cn
  • 作者简介:刘欣宇(1996—),女,硕士生。主要研究方向为无氟防水剂的制备。
  • 基金资助:
    海宁市科技计划工业项目(2021021)

Preparation and waterproof properties of fluorine-free polyacrylate latex composites

LIU Xinyu1,2, LI Jianhao3, WANG Zhen1,4, SHEN Junyan2, YANG Lei1,2()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Kefeng Silicone Co., Ltd., Jiaxing, Zhejiang 314423, China
    3. Zhejiang Provincial Innovation Center of Modern Textile Technology, Shaoxing, Zhejiang 312033, China
    4. Zhejiang Sci-Tech University Tongxiang Research Institute Co., Ltd., Jiaxing, Zhejiang 314599, China
  • Received:2022-02-18 Revised:2022-09-16 Published:2023-04-15 Online:2023-05-12

摘要:

针对含氟拒水整理剂存在生物毒性、耐久性较差等问题,合成了一种聚丙烯酸酯型无氟防水剂。将丙烯酸十八酯(SA)分别与丙烯酸乙基己酯(2-EHA)和甲基丙烯酸环己酯(TMCHMA)进行细乳液聚合,制备了成膜等性能不同的2种SA共聚物胶乳;2种胶乳经复合后用于织物的无氟防水整理,借助原子力显微镜观察了复合胶乳涂膜的表面形貌,研究了复合比例及用量对整理织物表面结构以及防水性的影响。结果表明:与2-EHA共聚可提高胶乳的成膜性,而TMCHMA的引入则可增强胶乳的保形性;2种胶乳复合后,在整理后的织物表面形成微纳疏水结构,整理织物的防水性能显著提升,其静态接触角最高可达152°,防水等级达到5级,经50次耐磨损测试后仍保持良好的疏水性能。

关键词: 丙烯酸十八酯, 细乳液聚合, 拒水整理, 防水性, 功能性纺织品, 无氟防水剂

Abstract:

Objective Textiles with water repellent function have attracted great attention. At present, the water repellent function is generally achieved by finishing textiles with fluorine-containing chemical agents, but this technique was deemed to cause biological toxicity problems. It research aims to investigate environment-friendly fluorine-free water repellent agent for textiles coating.
Method Two types of stearyl acrylate (SA) copolymer latex (PSA) were prepared by mini-emulsion polymerization of SA with ethyl hexyl acrylate (2-EHA) and cyclohexyl methacrylate (TMCHMA), respectively. These two types of latex were used for fluorine-free waterproof finishing of fabrics. The morphologies of composite latex films were investigated by atomic force microscope. The effects of composite ratio and dosage on the surface structures and waterproof performances of the finished fabrics were studied.
Results To start with, the PSA latex were spin-coated onto glass sildes, and followed by baking at 170 ℃ for 90 s. A relatively smooth surface was observed for latex prepared by copolymerization of SA and 2-EHA, with root mean square roughness (Rq) of only 5.0 nm (Fig. 2) and contact angle(WCA) of 88°. Submicron bulges appeared on the surface of composite latex films containing PSAh obtained by the copolymerization of SA and TMCHMA. Furthermore, with the growth of PSAh fraction, Rq of latex film increased accordingly and attained 13.8 nm as PSAh mass fraction increased to 100%. It led to the water contact angle increasing to 110.0° (Fig. 3). During fabric finishing, the dosage of PSAs-PSAh composite latex was kept at 20 g/L. By adjusting the proportion of composite latex, the contact angle of finished Oxford fabric reached a maximum of 144.8° at the PSAh mass fraction of 40% (Fig. 5). Then, Oxford fabric was replaced by Chun-Ya-Fang with high waving density. When the mass fraction of PSAh in the composite latex is 80%, the water contact angle (WCA) of finished Chun-Ya-Fang reached a maximum value of 152° (Fig. 6). When the dosage of composite latex is increased to 30 g/ L, the WCA of Oxford fabric after finishing were further increased and maintained to be higher than 150° (Fig. 6). The water repellent efficiency of composite latex was higher than either PSAs or PSAh. When attaining the same WCA, the dosage of finishing agent made of solo PSAh was 1.7 times of that of composite latex (Fig. 7). In addition, the composite latex-finished fabric exhibited improved performance of abrasion resistance. After 50 times of abrasion, the static water contact angle of the composite latex-finished fabric retained 148° (Tab. 2). The composite latex-finished fabric exhibited Grade 5 water repellency (Tab. 3) and excellent air permeability (Tab. 4).Conclusion The results showed that the copolymerization of SA and 2-EHA improved the latex film forming capacity, while the introduction of TMCHMA enhanced the shape retention of latex. After the two types of latex were compounded, a micro-nano hydrophobic structure was formed on the surfaces of the finished fabrics, and the waterproof performance of the finished fabrics were significantly improved. The maximum static contact angle reached 152°, and the waterproof grade attained Grade 5. After 50 times of wear resistance tests, the finished fabrics still retained good hydrophobic performance. In addition, the fabric structure exerted a great impact on the water repellency, so the composition of auxiliaries or finishing process should be adjusted during finishing: increasing the amount of auxiliaries, especially the content of PSAh, would improve the water repellency performance. At the same dosage of finishing agent, the best water repellency of fabrics with dense waving structure was generally found at high percentage of PSAh, contrasting that of fabrics with loose structure.

Key words: stearyl acrylate, miniemulsion polymerization, water repellent finish, waterproof, functional textile, fluorine-free water repellent agent

中图分类号: 

  • TS195.2

表1

PSA胶乳的合成方案及性质"

胶乳
名称
试样质量 Zeta电位/
mV
粒径/
nm
SA EHA TMCHMA
PSAs 33 5.8 0 +52.8 121
PSAh 33 0 5.8 +65.8 138

图1

PSAs胶乳及PSAh胶乳的合成反应式"

图2

玻璃表面涂膜的三维形貌"

图3

PSAs/PSAh复合胶乳中PSAh质量分数对玻璃表面涂层接触角及表面粗糙度Rq的影响"

图4

牛津布中纤维的三维表面形貌"

图5

复合胶乳(20 g/L)中PSAh质量分数对整理后牛津布接触角的影响"

图6

复合胶乳中PSAh质量分数对整理后织物接触角的影响"

图7

PSAh质量浓度对整理后牛津布水接触角的影响(对比实验3)"

图8

PSAs/PSAh复合胶乳整理示意图"

表2

防水整理牛津布50次循环摩擦后接触角的变化"

试样 未摩擦 50次摩擦
PSAs(100%)整理织物 136.9 136.1
PSAh(100%)整理织物 144.4 137.0
复合胶乳(PSAh质量
分数为60%)整理织物
150.9 148.0

表3

疏水整理后牛津布的沾水性测试结果"

PSAh质量分数/% 沾水等级 现象
0 4 受淋表面有零星的喷淋处润湿
20 4 受淋表面有零星的喷淋处润湿
40 4~5 受淋表面没有润湿,沾有少量水珠
60 5 受淋表面没有润湿或水珠
80 4 受淋表面有零星的喷淋处润湿
100 3 受淋表面喷淋处润湿

表4

疏水整理后牛津布的透气性能"

试样 透气率/(mm·s-1)
清水整理织物 51.7
PSAs(100%)整理织物 43.8
复合肢乳(PSAh质量分数为60%) 45.1
PSAh(100%) 50.3
[1] 陈安伏, 黄汉雄, 关伟盛. 超疏水高分子材料表面的微结构设计及其可调的黏附性[J]. 高分子学报, 2015(3): 245-251.
CHEN Anfu, HUANG Hanxiong, GUAN Weisheng. Design of microstructures on superhydrophobic polymeric surfaces with tunable adhesion[J]. Acta Polymerica Sinica, 2015(3):245-251.
[2] TISSERA N D, WIJESENA R N, PERERA J R, et al. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Applied Surface Science, 2015, 324: 455-463.
doi: 10.1016/j.apsusc.2014.10.148
[3] 隋智慧, 杨康乐, 陈杰, 等. 含氟聚丙烯酸酯乳液整理剂的性能及其应用[J]. 纺织学报, 2016, 37(9):100-105.
SUI Zhihui, YANG Kangle, CHEN Jie, et al. Properties and application of fluorine-containing acrylate copolymer emulsion as finishing agent[J]. Journal of Textile Research, 2016, 37(9):100-105.
[4] 张治军, 谷国团, 党鸿辛. 含氟织物整理剂的发展概况及展望[J]. 高分子材料科学与工程, 2004(5):24-28.
ZHANG Zhijun, GU Guotuan, DANG Hongxin. The development and out-look of fluorine-containing fabric general finishing agents[J]. Polymer Materials Science and Engineering, 2004(5):24-28.
[5] 卢雪, 刘秀明, 房宽峻, 等. 锦纶/棉混纺织物的耐久无氟拒水整理[J]. 纺织学报, 2021, 42(3):14-20.
LU Xue, LIU Xiuming, FANG Kuanjun, et al. Durable fluoride-free water-repellent finishing of polyamide/cotton blended fabric[J]. Journal of Textile Research, 2021, 42(3):14-20.
doi: 10.1177/004051757204200104
[6] 陈八斤, 蔡继权. 含氟织物整理剂的生态化发展[J]. 浙江化工, 2009, 40(11):1-3.
CHEN Bajin, CAI Jiquan. Eco-development of fluorine-containing fabric finishing agent[J]. Zhejiang Chemical Industry, 2009, 40(11):1-3.
[7] 姚安康, 周攀飞, 王少飞, 等. 聚氨酯-丙烯酸酯类无氟拒水剂的合成及应用[J]. 应用化工, 2021, 50(8):2051-2056,2061.
YAO Ankang, ZHOU Panfei, WANG Shaofei, et al. Synthesis and application of polyurethane-acrylate fluorine-free water repellent agent[J]. Applied Chemical Industry, 2021, 50(8):2051-2056,2061.
[8] 蔡露, 康佳良, 吕存, 等. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(2):161-167.
CAI Lu, KANG Jaliang, LÜ Cun, et al. Preparation of self-crosslinking fluorinated polyacrylate emulsion and its application propertiest[J]. Journal of Textile Research, 2021, 42(2):161-167.
doi: 10.1177/004051757204200306
[9] YE H, ZHU L, LI W, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles[J]. ACS Applied Materials Interfaces, 2017, 9(1): 858-867.
doi: 10.1021/acsami.6b12820
[10] MAZZON G, ZAHID M, HEREDIA-GUERRERO J A, et al. Hydrophobic treatment of woven cotton fabrics with polyurethane modified aminosilicone emulsions[J]. Applied Surface Science, 2019, 490: 331-342.
doi: 10.1016/j.apsusc.2019.06.069
[11] 王卫. 无氟拒水整理剂合成及应用性能[D]. 苏州: 苏州大学, 2016:11-13.
WANG Wei. Preparation and application performance of fluorine free water-repellant finishing agents[D]. Suzhou: Soochow University, 2016:11-13.
[12] 曲爱兰. 有机—无机杂化乳液超疏水涂膜的制备及表面微观结构调控[D]. 广州: 华南理工大学, 2008:92-97.
QU Ailan. Preparation and tunable micro-structure of superhydrophobic coating based on organic/inorganic hybrid emulsion[D]. Guangzhou: South China University of Technology, 2008:92-97.
[13] 何立凡, 叶丹滢, 王海侨, 等. 乳胶粒子形态对涂膜形貌和性能的影响研究[J]. 涂料工业, 2009, 39(10): 22-24, 29.
HE Lifan, YE Danying, WANG Haiqiao, et al. Influence of latex structure on morphology and performance of latex coatings[J]. Paint & Coatings Industry, 2009, 39(10):22-24,29.
[14] MUGICA-VIDAL R, ALBA-ELIAS F, SAINZ-GARCIA E, et al. Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates[J]. Surface and Coatings Technology, 2014, 259: 374-385.
doi: 10.1016/j.surfcoat.2014.10.067
[15] QZTURK E, TURAN E, CAVKARA T. Formation of poly(octadecyl acrylate) brushes on a silicon wafer surface[J]. Polymer International, 2012, 61(4): 581-586.
doi: 10.1002/pi.3207
[16] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10):115-119,131.
CHEN Ying, FANG Haoxia. Preparation and properties of hydrophobic conductive polypyrrole coating fabrics[J]. Journal of Textile Research, 2021, 42(10):115-119,131.
[17] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(2):1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane[J]. Journal of Textile Research, 2019, 40(2):1-7.
doi: 10.1177/004051757004000101
[1] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[2] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[3] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[4] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[5] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[6] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[7] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[8] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[9] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[10] 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
[11] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[12] 卢雪, 刘秀明, 房宽峻, 李瀚宇, 李翔, 高闯. 锦纶/棉混纺织物的耐久无氟拒水整理[J]. 纺织学报, 2021, 42(03): 14-20.
[13] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[14] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[15] 项伟, 杨宏林, 全琼瑛. 聚丙烯酸酯/罗丹明B复合乳胶的细乳液聚合制备及其应用[J]. 纺织学报, 2019, 40(09): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!