纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 132-138.doi: 10.13475/j.fzxb.20211003207

• 染整与化学品 • 上一篇    下一篇

基于二维碳化钛材料修饰的功能棉针织物制备及其性能

葛佳慧1,2, 毛志平1,2,3, 张琳萍1,2,3, 钟毅1,2,3, 隋晓锋1,2,3, 徐红1,2,3()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学与化工学院, 上海 201620
    3.山东中康国创先进印染技术研究院有限公司 国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2021-10-15 修回日期:2023-01-15 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 徐红(1968—),女,研究员,博士。主要研究方向为纺织品生态染整技术及导电纺织品。E-mail:hxu@dhu.edu.cn
  • 作者简介:葛佳慧(1997—),女,硕士生。主要研究方向为二维碳化钛材料的制备及其在纺织品的应用。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232021G-04);山东省重点研发计划项目(2020CXGC011102)

Preparation and properties of functional cotton knitwear modified by two-dimensional titanium carbide

GE Jiahui1,2, MAO Zhiping1,2,3, ZHANG Linping1,2,3, ZHONG Yi1,2,3, SUI Xiaofeng1,2,3, XU Hong1,2,3()   

  1. 1. Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    3. National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian, Shandong 271000, China
  • Received:2021-10-15 Revised:2023-01-15 Published:2023-04-15 Online:2023-05-12

摘要:

为拓展二维碳化钛材料在棉针织物中的应用,制备具有一定耐水洗性能的导电棉针织物,首先利用 LiF/HCl 混合溶液刻蚀前驱体钛碳化铝获得二维碳化钛导电材料(Ti3C2Tx),再对棉针织物进行阳离子化改性,使 Ti3C2Tx 通过静电作用附着到阳离子化的棉针织物表面,得到导电棉针织物材料。借助X 射线衍射仪、X 射线光电子能谱仪、扫描电子显微镜、透射电子显微镜等手段对棉针织物在阳离子化改性前后以及负载 Ti3C2Tx前后进行形貌表征和元素分析。通过 RTS-9 型四探针测试导电棉针织物的表面电阻,对棉针织物阳离子化改性工艺及 Ti3C2Tx 在阳离子化棉针织物表面的负载条件进行了优化。得到棉针织物阳离子化改性的最佳工艺:阳离子改性剂用量为 10%(o.w.f),氢氧化钠质量浓度为 10 g/L,获得Ti3C2Tx 在阳离子化棉针织物表面的最佳负载条件(超声波处理 60 min)。在优化条件下,负载 Ti3C2Tx 的阳离子化改性棉针织物表面电阻可低至 84.5 Ω/□,经20 次水洗后,导电棉针织物的表面电阻由 84.5 Ω/□上升至 95.6 Ω/□,仍在 100 Ω/□ 以下,可满足导电要求。

关键词: 二维碳化钛材料, 阳离子改性, 导电织物, 耐水洗性能, 功能纺织品

Abstract:

Objective Through preparation of conductive cotton fabrics with washable properties and application of two-dimensional titanium carbide to cotton fabrics, this research aims to obtain conductive cotton fabrics with a new method.
Method By cationic modification of cotton fabric, two-dimensional nanomaterial Ti3C2Tx was adsorbed on the surface of cationic cotton fabric to obtain new conductive cotton fabrics. The morphologies and elements of cotton knitted products before and after cationic modification and Ti3C2Tx loading were analyzed by X-ray diffractometer, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The surface resistance of conductive cotton fabric was tested by using RTS-9 four probes, and the cationic modification technology and adsorption conditions of Ti3C2Tx were optimized, so as to obtain the optimal scheme.
Results Ti3AlC2 is a three-dimensional solid, and the product after etching by hydrofluoric acid becomes a two-dimensional nanomaterial. This conclusion has been confirmed in the electron microscopy (Fig. 1), and it is also confirmed that the etched material contains F, O and other groups (Fig. 2), making the two-dimensional material negatively charged. Cationic modifier is a polymer nitrogen-containing compound. After cationic modification, the surface of cotton knitted fabric is grafted with positive amino group (Fig. 3). After ultrasonic treatment with Ti3C2Tx, there are Ti, F, O and other groups on the surface of the fabric, which proves that Ti3C2Tx is successfully loaded on the surface of the fabric (Fig. 4). Following the experimental design (Tab. 1), the optimal processing conditions are that the cationic modifier is 10% o.w.f(Fig. 6), the concentration of sodium hydroxide is 10 g/L (Fig. 5), the modification time is 30 min, and the ultrasonic time of Ti3C2Tx is 60 min (Fig. 8). Under optimized conditions, the surface resistance of cationic modified cotton knitted material loaded with Ti3C2Tx can be as low as 84.5 Ω/□. After 20 times of washing, the surface resistance of conductive cotton knitted material increases from 84.5 Ω/□ to 95.6 Ω/□, still below 100 Ω/□ (Fig. 9).
Conclusion This paper provides a method for fabric-loaded Ti3C2Tx nanosheets for fabric-based flexibility with excellent preparative properties. After cationic modification of cotton fabric, conductive nanosheets are applied to the fabric by adsorption. The composite cotton fabric has good electrical conductivity. The conductive fabric obtained by this method is simple and has excellent electrical conductivity textiles offer new ideas, and Ti3C2Tx/cation-modified cotton knitted fabrics can still maintain certain conductivity after washing for many times, but there are still many shortcomings and unsolved problems. For example, the preparation of Ti3C2Tx/cation modified cotton knitted fabric has good water resistance, but composites conductivity needs to be improved. Subsequent experiments can further explore the use of other cationic modifiers for comparison, or use adhesives to attach nanosheets to fabrics to observe whether the conductivity of composite materials is improved, and the application of nanomaterials in fabrics can be expanded by trying other fabrics.

Key words: Ti3C2Tx, cationic modification, conductive fabric, washable property, functional fabric

中图分类号: 

  • TS195.5

表1

改性工艺优化方案"

实验
编号
阳离子改性剂
M用量/
%(o.w.f)
NaOH质量
浓度/
(g·L-1)
Ti3C2Tx
悬浮液体
积/mL
超声波
处理时
间/min
1 5 0、5、10、
15、20
10 60
2 0、5、10、
15、20
10 10 60
3 10 10 5、10、15、20 60
4 10 10 10 20、40、60、
80、100

图1

Ti3AlC2和Ti3C2Tx 的XRD 衍射谱图"

图2

前驱体刻蚀前后FESEM形貌"

图3

Ti3C2Tx纳米片的TEM形貌和XPS图谱"

图4

阳离子改性织物的SEM照片和表面各元素的能谱图"

图5

负载Ti3C2Tx 的阳离子化改性织物的SEM图像和表面各元素的能谱图"

图6

NaOH质量浓度对织物表面电阻的影响"

图7

阳离子改性剂用量对织物表面电阻的影响"

图8

Ti3C2Tx体积对织物表面电阻的影响"

图9

Ti3C2Tx超声波处理时间对织物表面电阻的影响"

图10

洗涤次数对织物表面电阻的影响"

[1] ZHANG Y, PELLICCIONE C J, BRADY A B, et al. Probing the Li insertion mechanism of ZnFe2O4 in Li-ion batteries: a combined X-ray diffraction, extended X-ray absorption fine structure, and density functional theory study[J]. Chemistry of Materials, 2017, 29(10):4282-4292.
doi: 10.1021/acs.chemmater.7b00467
[2] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2013, 26:992-1005.
doi: 10.1002/adma.201304138
[3] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306
[4] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7):1953-1956.
doi: 10.1111/jace.1996.79.issue-7
[5] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale, 2016, 8(22):11385-11391.
doi: 10.1039/C6NR02253G
[6] LI T, CHEN L, YANG X, et al. A flexible pressure sensor based on an MXene-textile network structure[J]. Journal of Materials Chemistry C, 2019, 7(4): 1022-1027.
doi: 10.1039/c8tc04893b
[7] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013. DOI:10.1038/ncomms2664.
doi: 10.1038/ncomms2664
[8] GHIDIU M, LUKATSKAYA M, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
doi: 10.1038/nature13970
[9] 韩丹, 刘志华, 刘琭琭, 等. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究[J]. 物理学报, 2022, 71(1):48-56.
HAN Dan, LIU Zhihua, LIU Lulu, et al. Fabrication and gas sensing properties of two-dimensional Ti3C2Tx Mxene[J]. Acta Physica Sinica, 2022, 71(1):48-56.
[10] DONG K, PENG X, WANG Z L. Fiber/Fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020.DOI:10.1002/adma.201902549.
doi: 10.1002/adma.201902549
[11] LAN C T, LI C L, HU J Y, et al. High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assited "excess assembly" for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2018, 5(13):1800116-1800121.
doi: 10.1002/admi.v5.13
[12] WANG Y, LI B. Flexible touch sensor main techno-logy[J]. Sensors and Microsystems, 2012, 31(12):1-4.
[13] ZHANG M, WANG C, LIANG X, et al. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater[J]. Advanced Electronic Materials, 2017:1700193-1700199.
[14] TUTAK M, OKTAY ÖZDEMIR A. Reactive dyeing of cationized cotton: effects on the dyeing yield and the fastness properties[J]. Journal of Applied Polymer Science, 2011, 119(1):500-504.
doi: 10.1002/app.v119:1
[15] MASHTALIR O, NAGUIB M, DYATKIN B, et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Materials Chemistry and Physics, 2013, 139(1):147-152.
doi: 10.1016/j.matchemphys.2013.01.008
[1] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[2] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[3] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[4] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[5] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[6] 李畅, 房宽峻, 刘秀明, 安芳芳, 梁迎超, 刘昊. 疏水体系中阳离子改性对棉/聚酰胺织物表面墨滴铺展的影响[J]. 纺织学报, 2021, 42(09): 112-119.
[7] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[8] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[9] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[10] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[11] 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15.
[12] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[13] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[14] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[15] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!