纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 11-18.doi: 10.13475/j.fzxb.20220906701

• 纤维材料 • 上一篇    下一篇

用于铜离子检测的静电纺纤维膜制备及其性能

赵美奇, 陈莉(), 钱现, 李晓娜, 杜迅   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2022-12-26 修回日期:2023-03-31 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 陈莉
  • 作者简介:赵美奇(1998—),女,硕士生。主要研究方向为静电纺功能纤维膜。
  • 基金资助:
    陕西省科技攻关计划项目(2021SF-494)

Preparation and performance of electrospun membrane for Cu(Ⅱ) detection

ZHAO Meiqi, CHEN Li(), QIAN Xian, LI Xiaona, DU Xun   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2022-12-26 Revised:2023-03-31 Published:2024-03-15 Online:2024-04-15
  • Contact: CHEN Li

摘要:

针对铜离子检测费用高、难以现场检测及检测探针的污染问题,以天然染料紫胶红为铜离子识别单元,聚丙烯腈(PAN)及聚乙烯吡咯烷酮(PVP)为载体,通过静电纺丝法制备紫胶红/PAN/PVP纤维膜。借助旋转黏度计、扫描电子显微镜、接触角测量仪、X射线衍射仪、傅里叶变换红外光谱仪研究了纺丝液中PAN/PVP质量分数及PAN与PVP质量比对纤维膜结构和性能的影响,并考察了纤维膜对铜离子的检测能力。结果表明:当PAN/PVP质量分数为10%时,纺丝液黏度为300.0 mPa·s,紫胶红与PAN/PVP基纤维膜复合效果较好,纤维形貌良好,平均直径为(171.6±1.9) nm;当PAN与PVP质量比为7∶3时,纤维平均直径为(149.7±0.7) nm,紫胶红/PAN/PVP纤维膜的水接触角为64.1°;紫胶红/PAN/PVP纤维膜在干扰离子溶液中的色相值与颜色无明显变化,而在铜离子溶液中色相变化明显,且产生由红到黄的颜色响应,具有良好的抗干扰性;纤维膜在0.03 mmol/L 铜离子溶液中能产生由红到黄的颜色响应,随铜离子浓度递增,纤维膜颜色响应增强,满足复杂水体环境中铜离子的可视化现场检测。

关键词: 静电纺丝, 紫胶红, 聚丙烯腈, 聚乙烯吡咯烷酮, 铜离子检测, 颜色响应, 纤维膜

Abstract:

Objective Excessive Cu(Ⅱ) content may cause gastrointestinal disorders, liver and kidney damage, and even death. Therefore, the study of convenient Cu(Ⅱ) detection method is significant for maintaining human health. At present, the Cu(Ⅱ) detection is faced with problems of high detection cost, difficult on-site detection and pollution of detection probes. In order to solve the above problems, this study proposed a convenient Cu(Ⅱ) detection material for more intuitively detecting Cu(Ⅱ) content to avoid the inability so as to timely understand the Cu(Ⅱ) content of water that poses potential health risks.

Method In this study, the natural dye lac red (Lac) was used as the Cu(Ⅱ) detection probe, and polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP) were used as the carrier of the detection probe, and the Lac/PAN/PVP fiber membrane was prepared by electrospinning method. By means of rotational viscometer, scanning electron microscope, X-ray diffractometer and infrared spectrometer, the influences of spinning solution mass fraction and blending ratio on the structures and properties of fiber membranes were studied, and the Cu(Ⅱ) detection performance of fiber membrane was investigated.

Results When the mass fraction of PAN/PVP in spinning solution was increased from 7% to 19%, the corresponding viscosity was changed from 52.5 mPa·s to 4 316.7 mPa·s. When the mass fraction of PAN/PVP in the spinning solution was 7%, a lot of beads appeared on the surface of the fiber, and the fiber diameter was (102.3±1.8) nm. As the mass fraction of PAN/PVP in spinning solution was increased to 19%, the fiber formation tended to be uniform and smooth, and the fiber diameter increases to (546.3±7.4) nm. The fibers can be formed well at different mass ratios of PAN to PVP. The fiber diameter was decreased from (220.7±2.4) nm when the mass ratio of PAN to PVP was 5∶5 to (113.9±1.3) nm when the mass ratio of PAN and PVP was 9∶1. The water contact angle of the fiber membrane was decreased from 102.2° when the mass ratio of PAN to PVP was 10∶0 to 43.0° when the mass ratio of PAN to PVP was 5∶5. The addition of PVP improved the hydrophilicity of Lac/PAN/PVP fiber membrane. The infrared spectra showed that the absorption peak at 1 041 cm-1 was enhanced in the Lac/PAN/PVP fiber membrane, caused by the introduction of more hydroxyl groups on the lac red molecule to enhance the stretching of C—O in C—OH. It meant that lac red was successfully mixed into the fiber membrane. Two crystalline structures were found in the Lac /PAN/PVP fiber membrane. The Lac/PAN/PVP fiber membrane had no significant diffraction peaks at 2θ of 32°, 46° and 56°. It was found that the lac red was fully dissolved and evenly distributed in the fiber membrane by electrospinning. Only Cu(Ⅱ) can change the hue value of Lac/PAN/PVP fiber membrane from 338.0° to 22.3°, accompanied by a color response from red to yellow. It showed that the Lac/PAN/PVP fiber membrane has good anti-interference ability. The Lac/PAN/PVP fiber membrane hue value gradually changed from 349.9° red to 38.1° yellow. 0.03 mmol/L Cu(Ⅱ) solution was able to produce an obvious color response of Lac/PAN/PVP fiber membranes, and the color response intensity was increased with the Cu(Ⅱ) concentration from 0.03 mmol/L to 0.09 mmol/L.

Conclusion Lac/PAN/PVP fibers with a good morphology and a diameter of (149.7±0.7) nm were produced when the mass fraction of PAN/PVP was 10% and the mass ratio of PAN to PVP was 7∶3. The Lac/PAN/PVP fibers were able to specifically recognize Cu(Ⅱ) in solutions containing a variety of metal ions, producing a clear color response from red to yellow. Lac/PAN/PVP fiber membranes were capable of detecting Cu(Ⅱ) up to 0.03 mmol/L with the naked eye. The use of Lac/PAN/PVP fiber membranes for Cu(Ⅱ) detection enables the visualization of Cu(Ⅱ) detection and improves the convenience of Cu(Ⅱ) detection. Lac/PAN/PVP membranes have the advantages of good interference immunity and low detection limits, thus has potential applications in the field of Cu(Ⅱ) detection.

Key words: electrospinning, lac red, polyacrylonitrile, polyvinylpyrrolidone, copper ion detection, color response, fiber membrane

中图分类号: 

  • TS159

图1

不同PAN/PVP质量分数纺丝液的黏度"

图2

不同PAN/PVP质量分数的紫胶红/PAN/PVP纤维膜扫描电镜照片"

图3

不同PAN/PVP质量分数的紫胶红/PAN/PVP纤维膜直径分布"

图4

不同PAN与PVP质量比的紫胶红/PAN/PVP纤维膜扫描电镜照片"

图5

不同PAN与PVP质量比的紫胶红/PAN/PVP纤维膜直径分布"

图6

不同PAN与PVP质量比的紫胶红/PAN/PVP纤维膜接触角"

图7

紫胶红与纤维膜的红外光谱图"

图8

紫胶红粉末与不同成分纤维膜的X射线衍射谱图"

表1

紫胶红/PAN/PVP纤维膜在不同金属离子溶液中的色相值"

金属离子溶液 色相值H/(°) 金属离子溶液 色相值H/(°)
原膜 338.0 Cu2+ 22.3
Li+ 336.7 Zn2+ 337.2
Na+ 336.4 Cd2+ 337.5
Mg2+ 336.5 Ba2+ 335.0
Al3+ 331.6 Pb2+ 336.4
K+ 339.0 Co2+ 339.6
Ca2+ 338.3 Ni2+ 340.4
Fe2+ 339.9 La3+ 336.6

表2

紫胶红/PAN/PVP纤维膜在不同浓度铜离子溶液中的色相值"

铜离子浓度/
(mmol·L-1)
色相值
H/(°)
铜离子浓度/
(mmol·L-1)
色相值
H/(°)
0 349.9 0.05 32.4
0.01 0.3 0.06 32.9
0.02 0.1 0.07 36.2
0.03 16.2 0.08 36.3
0.04 23.3 0.09 38.1

图9

紫胶红/PAN/PVP纤维膜在不同溶液中颜色变化的光学照片"

[1] 孙德志, 孙怡, 秦占斌, 等. 铜试剂测定溶液铜离子浓度分光光度法的改进[J]. 化学工程师, 2019, 33(3): 70-73, 40.
SUN Dezhi, SUN Yi, QIN Zhanbin, et al. Improvement of spectrophotometric method for determination of copper ions concentration in solution by copper reagent[J]. Chemical Engineer, 2019, 33(3): 70-73, 40.
[2] CHEN H, LI Z H, LIU X T, et al. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2017. DOI:10.1016/j.saa.2017.05.071.
[3] WU X M, WANG H, YANG S X, et al. A novel coumarin-based fluorescent probe for sensitive detection of copper(II) in wine[J]. Food Chem, 2019. DOI:10.1016/j.foodchem.2019.01.090.
[4] JI Y, GHOSH K, SHU X Z, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds[J]. Biomaterials, 2006, 27(20): 3782-3792.
pmid: 16556462
[5] KI C S, GANG E H, UM I C, et al. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption[J]. Journal of Membrane Science, 2007, 302(1/2): 20-26.
doi: 10.1016/j.memsci.2007.06.003
[6] 黎德. 纳米纤维基比色传感膜的制备及其对Cu(Ⅱ)检测性能研究[D]. 上海: 东华大学, 2018: 35-42.
LI De. Preparation and research of colorimetric sensor strips for copper(Ⅱ) assay based on electrospun nanofibers[D]. Shanghai: Donghua University, 2018: 35-42.
[7] ZHANG H N, YAO C C, QIN X H. A visually observable copper ion adsorption membrane by electrospinning combined with copper ion probe[J]. Fibers and Polymers, 2021, 22(7): 1844-1852.
doi: 10.1007/s12221-021-0737-z
[8] LIU Y L, SUN Y, DU J, et al. Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO- based on a N-picolinyl rhodamine B-hydrazide derivative[J]. Org Biomol Chem, 2011, 9(2): 432-437.
doi: 10.1039/C0OB00411A
[9] MA L, XU Y, WANG K, et al. Synthesis and recognition properties for copper ions and cyanide anions of two coumarin hydrazide compounds[J]. Inorganic Chemistry Communications, 2015. DOI: 10.1016/j.inoche.2015.05.019.
[10] LI X J, LI Y, LIU A Y, et al. Highly selective visual sensing of copper based on fluorescence enhanced glutathione-Au nanoclusters[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2020. DOI:10.1016/j.saa.2019.117472.
[11] ZHU J X, ZHANG Y P, SHAO H L, et al. Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: the effects of pH and concentration[J]. Polymer, 2008, 49(12): 2880-2885.
doi: 10.1016/j.polymer.2008.04.049
[12] O'REILLY R, IEONG N S, CHUA P C, et al. Crystal growth inhibition of tetrahydrofuran hydrate with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers[J]. Chemical Engineering Science, 2011, 66(24): 6555-6560.
doi: 10.1016/j.ces.2011.09.010
[13] SRIVASTAVA S, CHOWDHURY A R, MAURYA S. Antimicrobial efficacy of methylated lac dye, an anthraquinone derivative[J]. Indian J Microbiol, 2017, 57(4): 470-476.
doi: 10.1007/s12088-017-0682-0 pmid: 29151648
[14] PAGLIAI M, OSTICIOLI I, NEVIN A, et al. DFT calculations of the IR and Raman spectra of anthraquinone dyes and lakes[J]. Journal of Raman Spectroscopy, 2018, 49(4): 668-683.
doi: 10.1002/jrs.v49.4
[15] MALLAKPOUR S, KHADEM E. Novel poly(N-vinyl-2-pyrrolidone) nanocomposites containing poly(amide-imide)/aluminum oxide nanostructure hybrid as a filler[J]. High Performance Polymers, 2015, 28(1): 55-63.
doi: 10.1177/0954008315570399
[16] MAŞLAKCI N N. Development and characterization of drug-loaded PVP/PAN/Gr electrospun fibers for drug delivery systems[J]. Chemistry Select, 2021, 6(10): 2548-2560.
[17] ZHANG Y F, GUAN J M, WANG X F, et al. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture[J]. ACS Appl Mater Interfaces, 2017, 9(46): 41087-41098.
doi: 10.1021/acsami.7b14635
[18] HOU J Z, WANG Y H, XUE H L, et al. Biomimetic growth of hydroxyapatite on electrospun CA/PVP core-shell nanofiber membranes[J]. Polymers (Basel), 2018. DOI:10.3390/polym10091032.
[19] 沈桢, 胡毅, 尹东旭, 等. 静电纺锡/聚丙烯腈纳米纤维膜制备与表征[J]. 纺织学报, 2014, 35(9): 1-6.
SHEN Zhen, HU Yi, YIN Dongxu, et al. Preparation and characterization of electrospun Sn/polyacrylonitrile nanofiber membranes[J]. Journal of Textile Research, 2014, 35(9): 1-6.
doi: 10.1177/004051756503500101
[20] QUAN L, ZHANG H L, XU L H. The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization[J]. Journal of Thermal Analysis and Calorimetry, 2014, 119(2): 1081-1089.
doi: 10.1007/s10973-014-4241-1
[21] 郭中富. 纤维素基电纺纤维复合膜的制备及其促植物伤口愈合研究[D]. 南京: 南京林业大学, 2017: 28-29.
GUO Zhongfu. Preparation of cellulose-based electrospun fiber composite membrane and its application to promote plant wound healing[D]. Nanjing: Nanjing Forestry University, 2017:28-29.
[22] YANG S L, YIN B, XU L, et al. A natural quercetin-based fluorescent sensor for highly sensitive and selective detection of copper ions[J]. Analytical Methods, 2015, 7(11): 4546-4551.
doi: 10.1039/C5AY00375J
[1] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[2] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[3] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[6] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[7] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[8] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[9] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[10] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[11] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[12] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[13] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!