纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 169-178.doi: 10.13475/j.fzxb.20240604901

• 纺织工程 • 上一篇    下一篇

按压排尿用针织人工膀胱的设计及其力学性能

丁凯1,2, 符芬1,2, 张智翔1,2, 杨语童1, 李超婧1,2, 赵帆1,2, 王璐1,2, 王富军1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2024-06-19 修回日期:2024-09-17 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 王富军(1981—),男,教授,博士。主要研究方向为生物医用纺织材料。E-mail:wfj@dhu.edu.cn
  • 作者简介:丁凯(1999—),男,硕士生。主要研究方向为生物医用纺织材料。
  • 基金资助:
    上海市东方英才青年项目(上海青年拔尖人才计划)(24Q10111);浙江省“尖兵”“领雁”研发攻关计划项目(2023C03098)

Design and mechanical performance of knitted artificial bladder for pressing urination

DING Kai1,2, FU Fen1,2, ZHANG Zhixiang1,2, YANG Yutong1, LI Chaojing1,2, ZHAO Fan1,2, WANG Lu1,2, WANG Fujun1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2024-06-19 Revised:2024-09-17 Published:2025-05-15 Online:2025-06-18

摘要:

为解决异体植入人工膀胱存在装置复杂、短期并发症、组织工程学要求较高等问题,设计了一种新型的高弹性人工膀胱。利用针织线圈弹性可调、形变灵活的特点,制备高弹性氨纶/聚乙烯人工膀胱和氨纶/聚丙烯人工膀胱,并通过水性聚氨酯覆膜工艺进一步改善人工膀胱的力学性能。对不同人工膀胱进行拉伸、顶破、耐磨等力学性能测试分析,结果表明:覆膜后的氨纶/聚乙烯人工膀胱在100%伸长率拉伸下弹性回复率达到92%,在9 N按压力下,尿液的排尽时间最短为3.2 s,相比于氨纶/聚丙烯人工膀胱和纯聚氨酯人工膀胱具有更好的流量控制和压力响应性,具备了目前商用人工膀胱所不具备的按压排尿性能,这种兼具按压排尿功能的高弹性人工膀胱为膀胱切除后的替代治疗提供了可能的解决方案。

关键词: 人工膀胱, 针织, 覆膜, 包覆弹性丝, 高弹性, 医用纺织品

Abstract:

Objective This research aims to design a highly elastic knitted artificial bladder to overcome the limitations of current alien bladder implants, such as complex installation, more short-term complications, and demanding tissue engineering requirements. By employing spandex/polyethylene (PE) and spandex/polypropylene (PP) uniting with the polyurethane coating, the study seeks to enhance mechanical properties, durability, and pressure-controlled urination of the artificial bladder. The ultimate goal is to provide a more effective and reliable artificial bladder solution, thereby improving the quality of life of patients suffering from bladder resection.
Method The study used knitting techniques to create highly elastic fabrics from spandex/polyethylene covered yarn and spandex/polypropylene covered yarn. These fabrics were then sewn into bladder shapes and coated with a waterborne polyurethane membrane to produce the spandex/PE artificial bladder (FE), spandex/PP artificial bladder (FP), and pure polyurethane artificial bladder (FM). The mechanical properties, including tensile strength, burst resistance, and abrasion resistance, were evaluated to investigate the influence of the coating process on their mechanical properties. Microscopy and contact angle measurements were adopted to analyze the surface characteristics, so as to optimize the design of artificial bladder. Finally, the artificial bladders underwent compression urination tests to identify the optimal pressure-responsive urination functionality.
Results Under the microscope, spandex in the spandex/PE fabric exhibited a more compact loop structure compared to the spandex/PP fabric, with a smooth and flawless surface, making it more suitable to used as artificial bladders. Tensile tests showed that the knitted loop structure provided excellent elasticity to the artificial bladders. The FE achieved an elastic recovery rate of 92% at 100% elongation, outperforming both the FP and the FM. This high elasticity is because of the combined effect of the spandex core and polyurethane coating, which effectively disperses and absorbs stress during deformation. Burst tests further indicated a significant increase in the bursting strength of both FP and FE, with FE reaching a maximum of 74.71 N, an increase of 34.52% compared to the pre-coated fabric, demonstrating that the polyurethane coating significantly enhances the structural integrity. Rubbing tests showed that the coating process greatly improved the durability of the fabrics. The wear times of FP and FE increased by 6.15 and 6.27, respectively, compared to their pre-coated counterparts, confirming the protective role of the polyurethane layer. Surface analysis through contact angle measurements revealed that the coating process altered the fabric's surface properties, making the front side of the FE fabric hydrophilic (contact angle of 44.5°) and the back side hydrophobic (contact angle of 106.4°). This dual characteristic is crucial for preventing bacterial adhesion and maintaining urine flow. In compression urination tests, the FE bladder demonstrated superior performance, achieving the highest instantaneous flow under low pressure (125 mL/s under 3 N) and maintaining efficient urination control across varying pressures. The FP bladder performed best at high pressure, reaching the highest flow rate (289 mL/s under 9 N) but was less efficient under lower pressures. These findings suggest that the FE bladder offers a more balanced response across different pressure ranges, making it more suitable for practical applications.
Conclusion The highly elastic spandex/polyethylene and spandex/polypropylene artificial bladders were prepared by virtue of the elastic adjustable and flexible deformation of the looped structure of the knitted fabrics. The waterborne polyurethane coating process successfully improved the mechanical properties of the artificial bladder and validated the feasibility of the pressure urination strategy. In practical applications, the spandex/polyethylene artificial bladder shows stable and efficient compression urination performance under various pressures. This highly elastic artificial bladder with compression urination function can provide a possible alternative treatment for bladder resection.

Key words: artificial bladder, knit, membrana tectoria, coated elastic silk, high elasticity, medical textiles

中图分类号: 

  • TS184.4

图1

人工膀胱的制备流程"

表1

样品规格参数表"

样品名称 加工工艺 厚度/mm 面密度/(g·m-2)
FP 织物覆膜 1.11 301
FE 织物覆膜 1.12 305
FM 成膜 1.10 310

图2

人工膀胱制备示意图"

图3

织物的显微镜照片"

图4

人工膀胱在不同伸长率下的拉伸性能"

图5

人工膀胱的顶破性能"

表2

马丁代尔摩擦测试结果"

样品名称 正反面 质量损失率/% 磨破次数
氨纶/PP 0.436 1 059
0.432 1 073
氨纶/PE 0.421 1 105
0.424 1 097
FP 0.391 7 006
0.322 6 112
FE 0.383 7 325
0.307 6 478
FM 0.427 6 871
0.431 6 837

表3

样品的水接触角"

样品名称 亲疏水性 水接触角/(°)
氨纶/PP 亲水 65.3
氨纶/PE 疏水 117.4
FP正面 亲水 46.7
FP反面 亲水 46.5
FE正面 亲水 44.5
FE反面 疏水 106.4
FM 亲水 45.4

图6

人工膀胱在不同压力下的最大瞬时流量和排尽时间"

图7

不同人工膀胱的细胞相对存活率"

[1] 孟庭瑞, 杨明莹, 刘玉芹, 等. 国外膀胱癌患者报告结局的研究进展[J]. 护士进修杂志, 2022, 37(12): 1094-1099.
MENG Tingrui, YANG Mingying, LIU Yuqin, et al. Research progress of bladder cancer patients' reported out-come abroad[J]. Journal of Nurses Training, 2022, 37(12): 1094-1099.
[2] WANG Z, SHANG Y, LUAN T, et al. Evaluation of the value of the VI-RADS scoring system in assessing muscle infiltration by bladder cancer[J]. Cancer Imaging, 2020, 20(1): 26.
doi: 10.1186/s40644-020-00304-3 pmid: 32252816
[3] WANG Y F, SHEN Z F, XIANG F Yue, et al. Appli-cation of targeted drug delivery based on nano plat-form in diagnosis and treatment of bladder cancer[J]. Journal of Drug Delivery Science and Technology, 2023. DOI:10.1016/j.jddst.2023.104873.
[4] LIU Weiguang, SUN Yuansheng, SUN Guobao, et al. AB095. Transurethral holmium laser bladder tumor submucosal dissection (HoL-BTSD) for non-muscle in-vasive bladder cancer[J]. Translational Andrology and Urology, 2018. DOI: 10.21037/tau.2018.AB095.
[5] LI Hecheng, WANG Li, LI Hongliang, et al. Analysis of risk factors for recurrence after tran-surethral resection of bladder tumor in patients with non-muscle invasive bladder cancer: 2-year follow-up out-comes[J]. Oncology, 2024, 102(4): 337-342.
[6] LENIS A T, LEC P M, CHAMIE K. Bladder Can-cer[J]. JAMA, 2020. DOI: 10.1001/jama.2020.17601.
[7] SILINA L, MAKSUT F, BERNARD-PIERROT I, et al. Review of experimental studies to improve radio-therapy response in bladder cancer: comments and perspec-tives[J]. Cancers, 2020, 13(1): 87.
[8] MCNICHOLAS D P, EL-TAJI O, SIDDIQUI Z, et al. Systematic review comparing uretero-enteric stricture rates between open cystectomy with ileal conduit, robot-ic cystectomy with extra-corporeal ileal conduit and ro-botic cystectomy with intra corporeal ileal conduit for-mation[J]. Journal of Robotic Surgery, 2024, 18(1): 100.
[9] 段南均, 左毅刚, 黄应龙. 根治性膀胱切除输尿管皮肤造瘘术后并发症的防治[J]. 世界最新医学信息文摘, 2019, 19(12): 65-66, 69.
DUAN Nanjun, ZUO Yigang, HUANG Yinglong. Pre-vention and treatment of complications after radical cystectomy and cutaneous ureterostomy[J]. World Latest Medicine Information, 2019, 19(12): 65-66, 69.
[10] HAUTMANN R E, HAUTMANN S H, HAUT-MANN O. Complications associated with urinary diversion[J]. Nature Reviews Urology, 2011, 8(12): 667-677.
doi: 10.1038/nrurol.2011.147 pmid: 22045349
[11] CASARIN M, MORLACCO A, DAL Moro F. Bladder substitution: the role of tissue engineering and biomaterials[J]. Processes, 2021. DOI: 10.3390/pr9091643.
[12] GARRIBOLI M, DEGUCHI K, TOTONELLI G, et al. Development of a porcine acellular bladder matrix for tissue-engineered bladder reconstruction[J]. Pediatric Surgery International, 2022, 38(5): 665-677.
doi: 10.1007/s00383-022-05094-2 pmid: 35316841
[13] LI W, QI N, GUO T, et al. Construction of tissue-engineered bladder scaffolds with composite biomateri-als[J]. Polymers, 2022, 14(13): 2654.
[14] LLOYD S N, CROSS W. The current use of bio-materials in urology[J]. European Urology Supplements, 2002, 1(10): 2-6.
[15] ADAMOWICZ J, KUFFEL B, VAN Breda S V, et al. Reconstructive urology and tissue engineering: Converging developmental paths[J]. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13(3): 522-533.
doi: 10.1002/term.2812 pmid: 30658008
[16] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200.
[17] PANE S, MAZZOCCHI T, IACOVACCI V, et al. Smart implantable artificial bladder: an integrated design for organ replacement[J]. IEEE Transactions on Bio-medical Engineering, 2021, 68(7): 2088-2097.
[18] YANG Xuxu, AN Chengrui, LIU Shuting, et al. Soft artificial bladder detrusor[J]. Advanced Healthcare Materials, 2018. DOI: 10.1002/adhm.201701014.
[19] WENDELS S, AVÉROUS L. Biobased polyure thanes for biomedical applications[J]. Bioactive Materials, 2021, 6(4): 1083-1106.
[20] WANG H, LI T, LI J, et al. Structural engineering of polyurethanes for biomedical applications[J]. Progress in Polymer Science, 2024. DOI: 10.1016/j.progpolymsci.2024.101803.
[21] 夏勇, 赵迎, 徐利云, 等. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(1): 64-70.
XIA Yong, ZHAO Ying, XU Liyun, et al. Preparation and properties of antibacterial and anti-contamination bio-logical protective materials[J]. Journal of Textile Research, 2023, 44(1): 64-70.
[22] 毛植森, 张羿新, 刘亚辉, 等. 氨纶生产的主要影响因素及差异化产品设计的基础[J]. 合成纤维, 2017, 46(3): 35-40.
MAO Zhisen, ZHANG Yixin, LIU Yahui, et al. The major influencing factors on spandex production and the principle of designing differentiated[J]. Synthetic Fiber in China, 2017, 46(3): 35-40.
[23] CHEN S, WANG Y, YANG L, et al. Biodegrada-ble elastomers for biomedical applications[J]. Progress in Polymer Science, 2023. DOI: 10.1016/j.progpolymsci.2023.101763.
[24] SHAW V P, MUKHOPADHYAY A. Behaviour of stretch denim fabric under tensile load[J]. Fibers and Polymers, 2022, 23(1): 295-302.
[25] 王雅倩, 万爱兰, 曾登, 等. 形状记忆氨纶/锦纶包覆纱的制备及其压力袜性能[J]. 纺织学报, 2023, 44(10): 53-59.
doi: 10.13475/j.fzxb.20220506101
WANG Yaqian, WAN Ailan, ZENG Deng, et al. Prepara-tion of shape memory polyurethane/polyamide covered yarn and properties of compression socks[J]. Journal of Textile Research, 2023, 44(10): 53-59.
doi: 10.13475/j.fzxb.20220506101
[26] 蒋高明, 高哲. 针织新技术发展现状与趋势[J]. 纺织学报, 2017, 38(12): 169-176.
doi: 10.13475/j.fzxb.20161200408
JIANG Gaoming, GAO Zhe. Development status and tendency of knitting technology innovation[J]. Journal of Textile Research, 2017, 38(12): 169-176.
[27] 李新彤, 丛洪莲. 针织西服面料设计及其性能[J]. 纺织学报, 2018, 39(12): 47-52.
doi: 10.13475/j.fzxb.20180106006
LI Xintong, CONG Honglian. Design and performance of knitted suit fabrics[J]. Journal of Textile Research, 2018, 39(12): 47-52.
doi: 10.13475/j.fzxb.20180106006
[28] QU S, LIU J, HAN X, et al. Dynamic stretching-electroplating metal-coated textile for a flexible and stretchable zinc-air battery[J]. Carbon Energy, 2022, 4(5): 867-877.
[29] 解开放, 罗凤香, 包新军, 等. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(3): 123-131.
XIE Kaifang, LUO Fengxiang, BAO Xinjun, et al. Preparation and performance of composite coated polyester harness cord with high wearability[J]. Journal of Textile Research, 2022, 43(3): 123-131.
[1] 李际军, 刘泽华. 三维个性化针织服装的针法建模[J]. 纺织学报, 2025, 46(05): 222-226.
[2] 丛洪莲, 方蕾妹, 姜菲, 李慧建, 俞旭良. 基于功能分区的横编防护外套模块化设计[J]. 纺织学报, 2025, 46(05): 227-235.
[3] 沙莎, 戴佳丽, 褚国伟, 付康怡, 刘雅婷, 邓中民. 全成形康复训练裤的结构设计与实现[J]. 纺织学报, 2025, 46(04): 171-178.
[4] 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234.
[5] 江文杰, 郭明瑞, 高卫东. 棉/涤纶短纤皮芯纱及其织物的力学性能[J]. 纺织学报, 2025, 46(03): 49-55.
[6] 姚一婷, 敖利民, 张展望, 苏友朋. 针织呢绒织物绒面性质的测试方法[J]. 纺织学报, 2025, 46(03): 100-108.
[7] 梁金星, 李东盛, 韩开放, 胡新荣, 彭佳佳, 李立军. 基于物理约束的纬编针织物动态形变模拟[J]. 纺织学报, 2025, 46(03): 109-115.
[8] 王罗俊, 彭来湖, 熊叙一, 李杨, 胡旭东. 基于超级基神经网络的自适应反演非奇异滑模纱线恒张力控制[J]. 纺织学报, 2025, 46(02): 92-99.
[9] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[10] 李沂蒙, 单梦琪, 李雯昕, 周奉凯, 毛吉富, 王富军, 王璐. 聚吡咯基可拉伸导电心肌补片的制备及其电传导性能[J]. 纺织学报, 2024, 45(12): 89-97.
[11] 赵雅杰, 丛洪莲, 孙江龙. 针织软凉席面料设计与性能评价[J]. 纺织学报, 2024, 45(11): 99-105.
[12] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[13] 韩炜, 邢晓梦, 张海宝, 姜茜, 刘天威, 卢佳浩, 闫志强, 巩继贤, 吴利伟. 基于粒子群算法对纬编针织物Johnson-Champoux-Allard模型参数反分析研究[J]. 纺织学报, 2024, 45(10): 103-112.
[14] 项雪雪, 刘娜, 郭佳祺, 高晶, 王璐, 胡修元. 图案化致热涤纶医用绷带的制备及其性能[J]. 纺织学报, 2024, 45(08): 198-204.
[15] 史伟民, 李洲, 陆伟健, 屠佳佳, 徐寅哲. 基于改进Yolov5模型的纱筒余纱量检测方法[J]. 纺织学报, 2024, 45(07): 196-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!