纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 1-8.doi: 10.13475/j.fzxb.20250304001

• 纺织科技新见解学术沙龙专栏:伪装与电磁屏蔽技术及应用 •    下一篇

基于聚苯胺的柔性红外隐身薄膜的制备与性能

吴晋瑶1, 钟毅1,2, 张琳萍1,2, 徐红1,2, 毛志平1,2()   

  1. 1.东华大学 化学与化工学院, 上海 201620
    2.东华大学 国家染整工程技术研究中心, 上海 201620
  • 收稿日期:2025-03-20 修回日期:2025-06-12 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 毛志平(1969—),男,研究员,博士。主要研究方向为纺织印染清洁加工及功能整理。E-mail:zhpmao@dhu.edu.cn
  • 作者简介:吴晋瑶(1999—),女,硕士生。主要研究方向为聚苯胺复合材料在红外隐身领域应用研究。
  • 基金资助:
    山东省重点研发计划(重大科技创新工程)项目(2021ZDPT03)

Preparation and properties of flexible infrared stealth films based on polyaniline

WU Jinyao1, ZHONG Yi1,2, ZHANG Linping1,2, XU Hong1,2, MAO Zhiping1,2()   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
  • Received:2025-03-20 Revised:2025-06-12 Published:2025-09-15 Online:2025-11-12

摘要: 为解决聚苯胺(PANI)直接成膜柔韧性差,易脆裂剥落以及使用高发射率的黏合剂影响材料红外隐身性能的问题,选取具有化学稳定性不同厚度的柔性纳米多孔聚丙烯薄膜(nanoPP)和柔性聚酰亚胺薄膜(PI)作为基材,通过简单的刮涂法将掺杂樟脑磺酸的聚苯胺涂料(PANI-CSA)均匀负载于薄膜表面,制得柔性红外隐身薄膜:涂覆聚苯胺的nanoPP(PANI/PP)和涂覆聚苯胺的PI(PANI/PI)。通过表征柔性薄膜的结构、力学性能、红外发射率及红外热成像,探究其红外隐身性能。结果表明:以厚度为16 μm的nanoPP(nanoPP16)为基材制得的PANI/PP16薄膜在8~14 μm中红外波段的发射率低至0.21,且具有良好的柔韧性;能够在60 min内保持优异的红外隐身效果,与人体保持9~10 ℃的辐射温差,使人体完全隐匿于环境中;热稳定性良好,可适用于240 ℃以下的红外隐身应用场景。

关键词: 聚苯胺, 柔性薄膜, 可穿戴红外隐身材料, 纳米多孔聚丙烯薄膜, 聚酰亚胺薄膜

Abstract:

Objective The continuous improvement of detection technologies presents significant challenges to stealth technology, getting more attention on the development of efficient infrared stealth technology. Polyaniline (PANI) offers an innovative approach with its unique electrochromic properties, low cost, low infrared radiation emissivity and easy processing. However, the practical application of PANI is hampered by problems such as poor flexibility, fragility, and easy peeling, and the application of its coatings is affected by high emissivity binder, which greatly limits its application in wearable devices. In order to realize the full potential of PANI, material properties must be optimised to address these limitations. In this research, the polyimide (PI) film and nanoporous polypropylene (nanoPP) films and were selected as the substrate to fabricate the flexible infrared stealth films.

Method Intrinsic state polyaniline was synthesized by chemical oxidative polymerization and subsequently doped with camphorsulfonic acid (CSA) through sufficient grinding at a molar ratio of 1∶0.8. The mixture was then stirred in an m-cresol solution for 48 h to obtain low-emissivity polyaniline coatings (PANI-CSA). The selected PI film and nanoPP films with a thickness of 16 μm (nanoPP16), and a thickness of 25 μm (nanoPP25)) were thoroughly washed with anhydrous ethanol and dried. The PANI-CSA coatings were uniformly applied to the films at a controlled height of 42 μm using a spatula and dried naturally at room temperature, hence obtaining the flexible low-emissivity films: polyaniline coated PI film (PANI/PI), polyaniline coated nanoPP16 film (PANI/PP16), and polyaniline coated nanoPP25(PANI/PP25).

Results The morphologies and structures of PI, nanoPP16, nanoPP25, PANI/PI, PANI/PP16 and PANI/PP25 films were analysed using SEM images. Among them, nanoPP16 shows flat, interconnected slit-like porous structure with concentrated and regular pore size distribution. According to the particle size of the PANI-CSA coating (45.06 nm), the polyaniline can follow the solvent to enter into the pores of the film, and through the synergistic effect of mechanical interlocking effect and intermolecular van der Waals' force, the PANI/PP16 film has smooth, low-emissivity surfaces without the use of high emissivity binders. Infrared reflectance and emissivity tests show that PANI/PI, PANI/PP16 and PANI/PP25 films all have low infrared emissivity and meet the requirements for infrared cloaking. Notably, PANI/PP16 has the lowest emissivity (0.21), which is attributed to its moderate pore size, which allows for deeper penetration of the polyaniline and avoids agglomeration during drying. In a 60 min infrared stealth monitoring experiment using an infrared camera, PANI/PI initially showed good stealth performance, but the effect became uneven over time, with the emissivity temperature rising to 30.2 ℃ after 20 min and losing its stealth capability completely after 30 min. In contrast, PANI/PP16 maintains excellent infrared stealth performance, with the surface radiation temperature stabilised at 23-24 ℃ in 60 min, which effectively masks the human body temperature and meets the requirement of long-time stealth. Thermal stability analysis shows that PANI/PP16 can be used in infrared stealth scenarios up to 240 ℃. The unique properties of nanoPP16, including its porous structure and flexibility, not only improve the adhesion and uniformity of polyaniline coatings without the use of binders, but also solve the brittleness problem usually associated with rigid polymers such as polyaniline. This combination of structural and functional advantages makes PANI/PP16 an ideal candidate for applications requiring long-lasting and effective infrared cloaking capabilities. These findings highlight the importance of substrate selection and structural design in optimising the performance of polyaniline coatings for advanced cloaking applications.

Conclusion The results show that the PANI/PP16 film has an emissivity as low as 0.21 in the mid-infrared band (8-14 μm) and maintains excellent infrared stealth performance for up to 60 min, with a radiant temperature difference of 9-10 ℃ from the palm of the hand, which allows the human body to be hidden from the environment. It is also thermally stable and can be used for infrared cloaking in scenarios up to 240 ℃. Additionally, the film has excellent flexibility, which successfully overcomes the problems of poor flexibility, fragility and flaking of pure polyaniline film, and effectively avoids the influence of conventional high emissivity binders on the overall stealth effect of the material This study provides a new approach for the application of polyaniline in the field of wearable infrared stealth materials

Key words: polyaniline, flexible film, wearable infrared stealth material, nanoporous polypropylene film, polyimide film

中图分类号: 

  • TS101.8

图1

不同薄膜的FT-IR光谱图"

图2

不同薄膜的扫描电镜照片"

图3

PANI-CSA涂料的粒径和Zeta电位"

图4

柔性薄膜的截面和断面扫描电镜照片"

图5

不同基材的发射率和透过率"

图6

不同基材制备的复合薄膜的反射率和发射率"

图7

不同薄膜的红外热成像图"

图8

PANI/PP16薄膜的柔性"

图9

nanoPP16、PANI、PANI-CSA和PANI/PP16在氮气条件下的TGA曲线和DTG曲线"

[1] WU Yue, TAN Shujuan, ZHAO Yue, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Prog Mater Sci, 2023, 135(50):101088.
doi: 10.1016/j.pmatsci.2023.101088
[2] DING Zhonggen, LIU Feifei, HAN Yuge. Novel infrared camouflage technology based on electroc-hromism[J]. Therm Sci Eng Appl, 2022, 14(1):011004.
[3] HU Jiaheng, HU Yan, YE Yinghua, et al. Unique applications of carbon materials in infrared stealth: a review[J]. Chem Eng J, 2023, 452:139147.
doi: 10.1016/j.cej.2022.139147
[4] 时吉磊, 陈廷彬, 张丽平, 等. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(6):32-38.
SHI Jilei, CHEN Tingbin, ZHANG Liping, et al. Preparation and properties of low infrared emissivity temperature-controlled thermal infrared camouflage materials[J]. Journal Textile Research, 2024, 45(6):32-38.
[5] ZHOU Yang, JAMEEL Luqman Rather, YU Kun, et al. Research progress and recent advances in development and applications of infrared stealth materials: a comprehensive review[J]. Laser Photonics Rev, 2024, 18(12):2400530.
doi: 10.1002/lpor.v18.12
[6] ZHUGE Fuwei, ZHENG Zhi, LUO Peng, et al. Nanostructured materials and architectures for advanced infrared photodetection[J]. Adv Mater Technol, 2017, 2(8):1700005.
doi: 10.1002/admt.v2.8
[7] XU Miaomiao, CHEN Xiaomin, BU Xiongzhu, et al. Research on attitude measurement compensation technology under the influence of solar infrared radiation interference[J]. Infrared Phys Technol, 2022, 123:104142.
doi: 10.1016/j.infrared.2022.104142
[8] FAN Xiachen, LI Shibo, ZHANG Weiwei, et al. Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage[J]. Ceram Int, 2023, 49(4):5559.
doi: 10.1016/j.ceramint.2022.12.034
[9] 张凯, 王波, 王贤名, 等. 红外隐身涂料的研究与进展[J]. 现代涂料与涂装, 2019, 68(12):26-30.
ZHANG Kai, WANG Bo, WANG Xianming, et al. Research and progress of infrared stealth coatings[J]. Modern Paint Finish, 2019, 68(12):26-30.
[10] 于海涛. 导电高分子材料在智能隐身技术中的应用[J]. 上海涂料, 2010, 48(2):26-29.
YU Haitao. The application of conductive polymer materials in the field of smart stealth technonogy[J]. Shanghai Coat, 2010, 48(2):26-29.
[11] 李春华, 齐暑华, 武鹏, 等. 高分子材料在红外隐身中的应用[J]. 国外塑料, 2005, 23(9):26-30.
LI Chunhua, QI Shuhua, WU Peng, et al. The application of polymer materials in infrared stealth[J]. World Plast, 2005, 23(9):26-30.
[12] WU K H, CHEN P H, YANG C C, et al. Infrared stealth and anticorrosion performances of organically modified silicate-NiZn ferrite/polyaniline hybrid coatings[J]. J Polym Sci, A: Polym Chem, 2008, 46(3): 926-935.
doi: 10.1002/pola.v46:3
[13] 刘晓明, 任志宇, 王强, 等. 红外隐身超材料[J]. 材料工程, 2020, 48(6):1-11.
doi: 10.11868/j.issn.1001-4381.2019.001019
LIU Xiaoming, REN Zhiyu, WANG Qiang, et al. Infrared stealth metamaterials[J]. Journal Materials Engeering, 2020, 48(6):1-11.
[14] 施冬梅, 赵文轸. 聚苯胺复合涂料红外与吸波性能研究[J]. 涂料工业, 2011, 41(11):1-5.
SHI Dongmei, ZHAO Wenzhen. Infrared and microwave absorbing properties of polyaniline composite coatings[J]. Paint & Coatings Industry, 2011, 41(11): 1-5.
[15] FENG Zhiting, LIU Yuanjun, ZHAO Xiaoming. Polyaniline/hollow glass beads/carbon fiber powder composite film for multifunctional military tarpau-lins[J]. Prog Org Coat, 2024, 19: 108601.
[16] HSU Pochun, SONG Alex Y, CUI Yi, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303):1019.
pmid: 27701110
[17] 钱胜.一种低发射率聚苯胺复合织物及其制备方法:113389052[P]. 2022-10-14.
QIAN Sheng.A kind of low emissivity polyaniline composite fabric and its preparation method: 113389-052[P]. 2022-10-14.
[18] 赵烁. 红外隐身篷盖布的制备与性能研究[D]. 上海: 东华大学, 2023, 19-35.
ZHAO Shuo. Preparation and property study of infrared stealthy tent fabrics[D]. Shanghai: Donghua University, 2023:19-35.
[19] LU Feifei, TAN Peiyu, HAN Yuge, et al. Variable infrared emittance mechanisms of electrochromic film based on poly(aniline) under various doping concentrations of camphorsulfonic acid[J]. Dyes Pigm, 2022, 200:110179.
doi: 10.1016/j.dyepig.2022.110179
[1] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[2] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[3] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[4] 刘杰, 高志. 基于柔性薄膜传感器的服装压力检测仪研制[J]. 纺织学报, 2021, 42(12): 159-165.
[5] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[6] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[7] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[8] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[9] 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116.
[10] 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104.
[11] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[12] 韩潇 洪剑寒 惠林 史韩萍 金丽华. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018, 39(02): 20-25.
[13] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[14] 李兰倩 卢明 刘一萍 谭炼 赵振云 刘祖兰 . 聚苯胺/蚕丝复合织物的制备及其pH值响应性[J]. 纺织学报, 2016, 37(4): 91-95.
[15] 洪剑寒 潘志娟 姚穆. 超高分子量聚乙烯/聚苯胺导电针织物的应变传感性能[J]. 纺织学报, 2016, 37(2): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!