高性能纤维制备及应用
为有效回收碳纤维树脂基复合材料,避免资源浪费和环境污染,综述了热固性和热塑性树脂基碳纤维复合材料的不同回收方法及其进展,包括物理机械法、热回收法、溶剂解离法、熔融注塑和切片再塑法等,梳理了溶剂解离法的回收思路,介绍了针对碳纤维复合材料回收的可降解热固性树脂及回收方法,阐述了碳纤维增强热塑性树脂的回收机制。总结了目前碳纤维增强热固性树脂回收方法的回收效率低,设备要求高,再生碳纤维性能下降等特点,认为碳纤维增强热塑性树脂具备快速成型、成本低、能够多次回收利用的特点,适于碳纤维复合材料在民用领域大量应用的发展趋势。
针对我国目前高度依赖进口石油和聚酰胺66主要原料己二胺被国外公司垄断的局面,顺应我国早日实现碳中和的战略目标,在简要回顾生物基聚酰胺发展历程的基础上,对生物基聚酰胺56纤维的特性作了详细描述,对其制备技术与应用领域的研究进展进行了综述。生物基聚酰胺56纤维具有良好的力学性能、吸湿性、柔软性、耐磨性、染色性、耐热性、耐化学性与阻燃性,适合应用于服装、家纺、产业用纺织品等领域,但生物基聚酰胺56纤维大规模推广还面临生物原料供给与成本控制、生产中能耗降低及副产物综合利用等问题,今后需要继续在生物基单体发酵与纯化、聚合、纺丝及应用等领域加大研发投入,不断降低生产成本,才能促进生物基聚酰胺56纤维在纺织领域的大规模应用。
为提高聚酰亚胺织物的服用性能,采用碱剂对聚酰亚胺织物表面进行羧基化改性处理。借助X 射线光电子能谱、红外光谱、热重、热阻、湿阻等测试手段研究了碱处理后聚酰亚胺织物的性能,并探讨了阳离子染料对其的染色性能。结果表明:碱处理可对聚酰亚胺纤维进行有效的改性;碱处理在聚酰亚胺纤维表面引入大量氧元素,纤维分子中引入了羧基和酰胺酸;改性后聚酰亚胺织物热稳定性保持良好;碱处理后聚酰亚胺织物热阻、湿阻略有下降,极限氧指数可达到37%,阻燃性能优异;聚酰亚胺纤维羧基化改性增加了阳离子染料的亲和力,平衡上染百分率显著提高,染色吸附等温线符合Langmuir 吸附模型。
针对碳纤维预浸料表面缺陷人工检测方法效率低、成本高、实时性差等问题,提出基于机器视觉的碳纤维预浸料表面缺陷自动检测方法。首先,在碳纤维预浸料生产线上,采用2台高分辨率线扫描相机快速连续采集图像,从中随机选择带有缺陷的图像1 000张;其次,基于大气光散射模型对图像进行去雾增强处理,以消除白色树脂的干扰;然后,改进具有19个卷积层和5个最大值池化层的YOLOv2目标检测算法,用于缺陷的检测;最后,对预处理后的图像进行网络训练提取图像特征,识别图像目标,并对训练好的网络进行实验验证。结果表明:该方法在复杂的工业环境下,具有较高的识别精度和鲁棒性,识别成功率达到94%以上,且每张图像的检测时间不超过 0.1 s,可满足工业生产中精度和实时性要求。
为推进高性能聚酰亚胺纤维在纺织材料领域的应用发展,分析了5 种商业化聚酰亚胺纤维的微观结构和力学性能,并通过全自动剑杆小样织机对其可织造性能进行了研究。借助红外光谱仪、X 射线衍射仪、扫描电子显微镜、纤维强伸度仪和纱线抱合力机对纤维的结构和性能进行表征。结果表明:5 种聚酰亚胺纤维中强度及模量最高纤维的亚胺化程度为97.26%,结晶度为19.27%,取向度为0.92,以上结构参数赋予其优异的力学性能,其强度和模量分别为2 239.24 MPa 和56.62 GPa,但伸长率较小,仅为4.03%;该纤维表面光滑、致密、具有明显的原纤结构,但耐磨性差,对其织造性能和织物表观形貌具有一定影响。
为开发兼具电损耗和磁损耗的新型轻质柔软吸波复合材料,采用聚丙烯腈(PAN)基预氧丝毡浸渍金属盐溶液,经高温处理工艺制备了磁性颗粒/碳纤维轻质柔软复合材料。通过弓形法吸波测试、X射线衍射、X射线能谱分析、扫描电子显微镜观察等方法对材料性能进行表征和分析。结果表明:所制备的复合材料由碳纤维和具有磁损耗性能的Fe—Co—Ni、Fe3O4、Fe—Ni、Fe—Co等颗粒组成,磁性颗粒沿着纤维轴向均匀分布,电损耗与磁损耗间的协同作用使磁性颗粒/碳纤维复合材料表现出优异的吸波性能。当处理温度为650 ℃和700 ℃时,试样电磁波发射损耗小于-5 dB的吸收波段分别为8.6~18 GHz和10~18 GHz,电磁波反射损耗小于-10 dB的吸收波段分别为13.9~18 GHz和14~18 GHz。结果表明,过高或过低的处理温度会降低材料电磁波损耗,通过调节处理温度可控制材料的吸波性能。
随着可穿戴技术的快速发展,对柔性锂电池的需求日益增加,将电化学性能优异的活性电极材料与柔性纳米碳基材料进行复合,是目前制备高性能柔性锂电池电极的热门研究方向。本文主要对碳纤维及其织物在锂离子和锂硫电池柔性电极材料中的研究与应用情况进行综述,总结了制备柔性复合电极材料的不同方法及其进展,包括静电纺丝技术、水热法、热处理、涂覆、磁控溅射、原子层沉积和热刻蚀等,所获得的电极材料均在某方面表现出优异性能,例如可逆容量高、循环性能优异、力学强度增强等。最后对基于碳纤维及其织物的柔性锂电池电极的未来发展提出了展望。
生物基聚酰胺56(PA56)纤维是由生物基1,5-戊二胺和石油基1,6-己二酸聚合制备而成的新型生物基材料。为探究生物基PA56纤维的热稳定性,分别在氮气氛围中测定其在不同升温速率下的热降解过程,并计算其热降解动力学参数,同时分析了生物基PA56纤维在热降解过程中的主要热降解气相产物。结果表明:生物基PA56纤维的热失重曲线及热降解动力学参数对升温速率具有显著依赖性,采用Kissinger法、Flynn-Wall-Ozawa法和Coasts-Redfern法获得的生物基PA56纤维的活化能分别为235.00、217.23和232.18 kJ/mol,可推测其热降解机制为F1型,热降解过程中产生的主要气相产物为CO2、环戊酮和1,5-戊二胺。
为提升超高分子量聚乙烯织物的防锥刺性能,采用剪切增稠液对织物进行浸渍复合,制备了柔性液体防 护材料。采用落锤实验测试了不同密度的超高分子量聚乙烯织物及与剪切增稠液复合后织物的防锥刺性能,研究了不同质量分数剪切增稠液的流变性能和浸渍后织物的纱线抽拔性能,并分析了织物复合后的增强机制。实验结果表明:剪切增稠液的增稠效果随着分散相质量分数的增加而增强,剪切增稠液浸渍后织物的纱线抽拔力提高了3.1倍,经剪切增稠液浸渍的织物具有更好的防锥刺效果。剪切增稠液显著提高了纱线的摩擦力,并限制纱线滑移,从而具有更好的防锥刺效果。
为开发出一种柔性防护材料,采用超高分子量聚乙烯纤维(UHMWPE)与芳纶制备的平纹织物作为增强面板,软式聚氨酯(PU)作为芯材,利用纺织技术与一体发泡技术相结合制备了具有良好缓冲性能的夹芯结构柔性复合材料。同时,选用面密度相同的锦纶非织造布及玄武岩平纹布作为增强面板对比材料,对3类夹芯复合材料进行静态与动态力学性能测试。结果表明:芳纶/UHMWPE织物增强夹芯复合材料的力学性能优良,经向拉伸断裂强力为1 930 N,断裂伸长率为5.8%;纬向拉伸断裂强力为1 744 N,断裂伸长率为6.5%;在7.5 mm处进入压实阶段,压缩形变为93%;冲击破坏强力为1 260 N, 吸收的总能量为13.4 J,能量密度为4.95 J/g;芳纶/UHMWPE织物增强夹芯复合材料在保证质轻的基础上,具有良好的能量吸收效果。
为准确分析不同结构厚截面复合材料不同方向上的弯曲性能差异,通过设计织造三向正交、浅交直联、浅交弯联3种典型机织结构的厚截面碳纤维三维机织物,并采用真空辅助树脂成型工艺制备了近似纤维体积含量的碳纤维复合材料板,对其进行了XYZ方向的弯曲实验。结果表明:三向正交结构由于内部纤维束近似平直,碳纤维束自身性能得到最大利用,对应复合材料经向弯曲强度最好;浅交直联结构复合材料的Z经和Z纬弯曲强度累加值最大,其厚度截面上的综合弯曲性能最好,且其他各方向的弯曲强度较为均衡;浅交弯联结构内部纱线交织摩擦损伤严重,且经纱屈曲程度最大,对应复合材料经纬向弯曲性能均为最差。
为提高超高分子量聚乙烯织物的疏水性能,基于荷叶效应原理,采用涂层方法在织物表面构筑纳米微米结构。将二氧化硅气凝胶分散于聚偏氟乙烯(PVDF)溶液中制成涂层液,并对超高分子量聚乙烯织物进行涂层处理。借助X 射线光电子能谱仪、扫描电子显微镜、原子力显微镜等测试织物表面的化学组成及微结构,并采用集灰实验测定织物的自清洁性能。结果表明:当PVDF质量分数为12%、二氧化硅气凝胶质量分数为8% 时,涂层织物表面的最大接触角为157.8°,滚动角为3°;涂层膜表面有微米级突起和纳米级颗粒状突起;水滴可将涂层后织物表面的污物带走,织物具有良好的自清洁效果。
针对碳纤维在二维编织过程中不耐扭折、易受损断纱的问题,通过拉伸性能实验和导纱瓷眼折角磨损实验分析了碳纤维复丝的可编织性能,探讨了纱管在缠绕过程中应注意的问题。在24 锭二维编织机上编织了8 种不同工艺参数的碳纤维管状编织物,研究了编织工艺对织物外观起毛情况及力学性能的影响。结果表明:碳纤维复丝的断裂强度为86.39 cN/tex,断裂伸长率为1.12%,断裂强度远高于其他纤维,但延伸性差;影响碳纤维复丝在导纱瓷眼处折角磨损程度的因素依次为牵引力、折角、编织速度;在编织纱线根数不变的情况下,随编织节距的减小,管状编织物的面密度逐渐增加,起毛现象严重,编织物的拉伸断裂强力降低。
为研究纺织材料在热流冲击下的热传递性能,以碳纤维平纹织物为例,利用电子显微镜获得纱线的几何结构参数、经纬纱交织路径及横截面形状,建立碳纤维织物单元结构模型,基于传热学的基本方程,利用有限元法数值求解织物厚度方向上的温度随时间变化曲线。结果表明:利用创建的热流冲击下织物热传递数值模型可预测织物背面温度随时间变化的情况;试验验证发现,利用数值模型计算获得的织物背面温度随时间的变化趋势与试验结果一致,当织物表面分别施加热流密度为1 319 W/m2和1 103 W/m2时,织物背面温度的模拟值和试验值的平均相对误差分别为6.64%和3.28%。说明所建立的数值模型能较好地反映碳纤维平纹织物动态传热过程,可为高温热流冲击下隔热耐烧蚀织物的开发和性能优化提供理论参考。
为获得仿生树型结构的超高分子量聚乙烯(UHMWPE)非织造复合材料,采用针刺水刺复合技术制备聚对苯二甲酸乙二醇酯/ 聚酰胺6 中空橘瓣型双组分超细纤维层夹持UHMWPE长丝层的树型柔性防刺复合材料,并对样品形态结构和理化性能进行表征。结果表明:超细纤维以纤维簇的形式在UHMWPE长丝层内形成超细纤维通道,UHMWPE长丝层与两侧超细纤维层在针刺和水刺的冲击作用下紧密缠结成仿生树型结构;针刺密度和针刺深度对透湿率有显著影响, 在针刺密度为274.37 刺/cm2, 针刺深度为7.70 mm 时, 样品透湿率为889.20 g/(m2?24 h);建立的二次方模型的置信度高,可用于仿生树型UHMWPE柔性防刺复合材料透湿性能的理论分析
为开发低成本的柔性可穿戴防刺材料,选用细度为48.2 tex的高性能芳纶1414短纤纱线和直径为0.06 mm的304不锈钢长丝,采用包芯纱工艺纺制芳纶/不锈钢长丝包芯纱,优化纺纱工艺参数,得出最佳纱线包绕数,并用该纱线制备出具有防刺性能的织物。对纱线的力学性能和织物防刺性能进行测试,改变织物叠层数,探讨叠层数对织物防刺性能的影响。研究结果表明:当纱线的包缠捻度为200 捻/m左右时,纱线的断裂强度为77.99 cN/tex,有害毛羽指数为90.42,可满足后续织物的织造;平纹织物的刀刺和锥刺性能与织物叠层数呈正相关线性关系。锥刺和刀刺的刺入原理不同,锥刺的破环机制是纱线滑移, 刀刺的破坏机制是纱线切割断裂。
为有效减少碳纤维层叠布缝纫过程中的断线问题,改进了用于碳纤维层叠布缝制的缝纫机。改进的理论依据是执行构件叉与圆周期性地挑动缝纫线使缝纫线放松,配合缝纫针完成缝纫工作,减少缝纫线在缝纫时的切应力,减少缝纫过程中断线,保持缝纫的连贯性。基于 Pro/Enhineer 软件对改进机构进行三维建模、装配,参数化设计了改进机构中的齿轮、凸轮、拨线叉、拨线杆等关键构件,利用其机构模块对改进机构中的执行构件拨线叉与拨线杆进行位移、速度、加速度分析。结果表明,改进机构运行平稳,满足预期设计要求。改进后机构可降低断线率,提高生产效率。
为改善芳纶纤维与树脂基体之间的黏结性,采用氮气冷等离子体技术对芳纶纤维进行改性,借助扫描电子显微镜、原子力显微镜、X射线光电子能谱仪及接触角测量仪观察和分析纤维的表面形貌、化学组分、表面润湿性及表面能的变化。结果表明:样品处理后24 h内,纤维表面粗糙度提高,C 含量减少,N 和 O 含量增加,接触角由疏水转变为亲水,表面能增大;随着放置时间的延长,纤维表面粗糙度保持不变,非极性基团C—C 和C—H 含量增加,极性基团C—N、C—O 和NH—CO 含量减少,表面能降低,接触角增大,最后趋于稳定;放置28 d 后,接触角比未处理纤维降低了27.8°,表面能提升了87%,表明冷等离子体对表面的刻蚀和改性是永久的。
针对中国高性能聚丙烯腈(PAN)基碳纤维产业技术发展现状和存在的问题,就其生产过程中的一些基础问题进行总结,提出了研究和产业发展建议。在PAN原丝纺丝溶液制备过程中,可通过聚合工艺和设备的协同,实现PAN连续溶液聚合,得到均匀的PAN纺丝溶液。在原丝制备过程中,可通过凝固参数控制,调控PAN纺丝溶液细流的相分离过程,减小相分离过程形成的微孔尺寸;在干燥致密化和干热牵伸过程中,调控温湿度和张力,可控制微孔融合和PAN分子结晶与取向,制备出高品质碳纤维原丝。在预氧化和炭化过程中,通过对温度场和应力场的调控,控制预氧化过程的皮芯结构和炭化过程中的乱层石墨结构,可实现对碳纤维性能调控。
针对碳纤维表面极性官能团少,化学活性低,与基体间的界面结合强度弱等问题,综述了国内外关于电泳沉积碳纳米管和氧化石墨烯修饰碳纤维提高其复合材料力学性能的最新研究进展。阐述了在不同的电泳沉积工艺下,分别在碳纤维表面引入碳纳米管和氧化石墨烯,对修饰碳纤维表面及其复合材料力学性能的影响。总结了影响电泳沉积修饰碳纤维效果的因素,并提出了相应的建议。展望了电泳沉积修饰碳纤维表面的研究发展方向,指出对碳纤维、碳纳米管和氧化石墨烯进行预处理,添加辅助工艺的电泳沉积设备制造将会成为未来的重要研究方向。
针对聚偏氟乙烯(PVDF)膜强度与渗透性能难以同步提高的问题,以矿物油和邻苯二甲酸二丁酯为复合稀释剂,通过热致相分离法制备了PVDF/超高分子量聚乙烯(UHMWPE)共混中空纤维膜,探究不同冷却温度对膜形貌及孔结构的影响,并通过气通量、水通量及拉伸强力测试表征了中空纤维膜的渗透性能与力学性能。结果表明:原纤状UHMWPE增加了PVDF球晶聚集体的连接性;冷却温度对共混中空纤维膜的结构与性能影响显著;随着冷却温度的升高,PVDF/邻苯二甲酸二丁酯和UHMWPE/矿物油的相分离与结晶时间均延长,纤维膜的平均孔径和孔隙率增加,渗透性能改善,但大孔的出现和UHMWPE原纤数量的减少使纤维膜的力学性能下降。
为进一步探究编织结构与长度对复合材料圆管压缩性能的影响,采用树脂传递模塑成型工艺复合二维编织铺层与三维四向编织圆管,通过轴向准静态压缩试验获取了4种复合材料圆管试样的压缩力学行为。结合高速摄影记录,分析了编织复合材料圆管的破坏过程及失效模式,探索其压缩失效机制。结果显示:试样均表现出弹塑性特征,但三维编织圆管呈现出更好的压缩承载特性,其压缩模量与载荷峰值分别达到5.91 GPa与14.23 kN;试样呈现出纤维断裂、基体开裂脱黏、瓣状破坏、剪切以及挤压屈曲等破坏模式中的几种或全部的组合;二维编织复合材料圆管的渐进失效特征更为明显,具有较好的吸能特性,且其压缩模量随管件长度的增加而有所提升,但是吸能效果与试样长度呈非线性关系。
针对超高分子量聚乙烯(UHMWPE)纤维熔点低、易蠕变等不足,以油田井下作业环境为测试条件,研究了UHMWPE纤维在干热和湿热状态下的力学稳定性能,借助差示扫描量热仪、热重分析仪、扫描电子显微镜、X射线衍射仪和电子能谱分析仪,表征并分析了UHMWPE纤维的热学性能和微观结构。结果表明:UHMWPE纤维表面在热和处理液的刻蚀作用下产生明显的沟槽;在相同的温度下处理,湿热状态下纤维的力学性能损失比干态下小,尤其在70 ℃下湿热连续处理30 d,纤维强力下降率基本控制在6%以内;对纤维进行干热处理,当温度接近纤维熔点时,随着温度的升高,纤维强力下降明显,140 ℃下干热处理1 h,强力最大下降率达19.87%。
为研究SiO2气凝胶对芳纶非织造布抗压、阻燃防护功能的影响,以芳纶非织造布为骨架材料,将SiO2气凝胶施加到芳纶非织造布表面,制备出SiO2气凝胶混杂芳纶非织造布防护材料。通过扫描电子显微镜对其结构形貌进行表征,借助万能材料试验机对其抗压性能进行分析,最后利用热常数分析仪和火焰手系统,测试并评估了制备的防护材料的阻燃隔热性能。结果表明:SiO2气凝胶以不同大小的块状、颗粒状填充进入芳纶非织造布纤维间的空隙;SiO2气凝胶可增强芳纶非织造布的抗压性能,且降低其导热系数;混杂SiO2气凝胶后芳纶非织造布总的吸收能量值降低,说明SiO2气凝胶可明显增强芳纶非织造布的热防护效果。
为提高芳纶的导电能力,以芳纶长丝纱为基材,采用一种基于原位聚合法的纱线连续导电处理方法制备芳纶/聚苯胺复合导电纱线。并以导电芳纶为增强体,以不饱和聚酯树脂为基体,制备了二轴向、三轴向和四轴向导电芳纶增强复合材料,研究了其电磁屏蔽性能。结果表明:经导电处理后,芳纶纤维表面附着一层导电聚苯胺,其电导率可达1.4~1.9 S/cm,力学性能稍有下降;多轴向导电芳纶增强复合材料其屏蔽效能值随着导电芳纶轴向数和排列密度的增大而提高,当导电芳纶排列密度达到70 根/(5 cm)时,四轴向导电芳纶增强复合材料对0.1~1.5 GHz范围内电磁波的平均电磁屏蔽效能达到22 dB。
为提高超高分子量聚乙烯(UHMWPE)纤维的阻燃性能,采用兼具阻燃和抑烟作用的氢氧化镁包覆碳微球(MH-CMSs)作为阻燃剂,以钛酸四丁酯和亚磷酸三苯酯作为活化剂,依次通过除杂—活化—浸轧—烘焙的方法对UHMWPE纤维进行阻燃改性。测试了纤维的阻燃性能、力学性能以及热稳定性,研究其阻燃作用机制。结果表明:该方法能在不损害UHMWPE纤维力学性能的同时有效提高其阻燃性能;与纯UHMWPE纤维相比,经阻燃整理后得到的FR-UHMWPE纤维的极限氧指数(LOI值)可提高36%以上,峰值热释放速率降低幅度达39.3%,且纤维的发烟和熔滴现象也得到改善,火灾危险性显著降低;FR-UHMWPE纤维表现出凝聚相阻燃机制,阻燃整理促进了UHMWPE热降解成炭,使其在燃烧时形成了致密连续的炭层,该炭层能有效阻止热与质的传递,从而起到阻燃作用。
为研究添加不同含量的水性环氧上浆剂以及上浆剂含固量对碳化硅(SiC)纤维表面以及SiC纤维束织造性能的影响,对纤维束进行了二次表面上浆处理。测试了SiC纤维束的耐磨性、强伸性以及柔软性等适编性能。结果表明:与未二次上浆和由E-0、E-10、E-20上浆剂上浆的SiC纤维束相比,经E-15上浆剂上浆后的SiC 纤维束耐磨性能最好, 柔软性也较好;上浆剂的含固量对纤维表面形貌影响较大;用含固量为9%的E-15上浆剂上浆后的纤维表面浆膜更为完整光滑,同时SiC 纤维束的断裂强度较未二次上浆处理的提高了180%,说明此含固量为最适合的E-15上浆剂含固量。
为提高静电纺丝聚酯纤维膜的力学性能,根据多孔碳纤维的高强度和高模量特性,在聚对苯二甲酸乙二醇酯(PET)溶液中添加自制棕榈基多孔碳纤维(PACF),制得PET/PACF杂化纤维膜,并研究了PACF含量对杂化纤维膜形貌、结晶行为和力学性能的影响。结果表明:添加PACF后,纤维牵伸效果明显改善,类竹节状纤维消失,纤维间黏连减少,直径更均匀;随PACF含量的增加,杂化纤维膜的玻璃化温度较纯PET提高约10℃,结晶度约提高6.7%,证明PACF 的加入改善了电场对射流的牵伸效果,使得取向度提高;结晶温度提高约13.7 ℃,说明PACF异相成核作用促进了纤维膜的结晶。随取向度的提高,当PACF 含量为2.5% 时,纤维膜断裂强度达4.22MPa,较纯PET 静电纺膜提高了366.3%。
针对玄武岩纤维表面光滑、集束性差且呈化学惰性,纤维浸润性差导致其与浆液黏附力不足的缺陷,采用低温等离子体技术改性玄武岩长丝表面,以改善玄武岩长丝浆丝时集束性能。探讨放电功率、放电气压及放电时间对玄武岩长丝表面形态、静摩擦因数、动摩擦因数及力学性能的影响,借助扫描电子显微镜对改性玄武岩长丝的表观形貌进行表征,分析改性玄武岩长丝与纺织浆料黏附性能的关系。结果表明:低温等离子体改性后玄武岩长丝表面粗糙程度提高,比表面积增大,摩擦因数增加,玄武岩长丝与纺织浆料的黏附性增强,集束性明显改善;当放电功率为300 W,放电气压为30 Pa,放电时间为7 min 时,改性玄武岩长丝上浆率高,浆丝集束性好。
针对间位芳纶织物导湿排汗性能差而影响穿着舒适性的问题,采用酸性高锰酸钾和等离子体2 种改性方法分别处理芳纶织物,并对改性后的织物进行导湿排汗整理。结果表明:酸性高锰酸钾改性后纤维表面裂痕较深且数量较多,质量损失较大;等离子体改性后表面含有更多的氧元素和极性基团,整理后其含量进一步提高,其中羟基含量增加最多;改性后断裂强力和断裂伸长率略有下降,整理后有所回升;整理后织物的回潮率增大,导湿性、透湿性、透气性及抗静电性均得到改善;改性后再整理织物的耐洗性明显好于未改性仅整理的织物;改性和整理均不会损害织物的阻燃性,阻燃性反而有所提高。
为增强芳纶机织物的纬纱交织阻力,将纱罗组织和平纹组织结合,以提升纬纱对横向抽拔作用的抵御能力。通过准静态纱线抽拔试验发现:在交织阻力位移曲线的退屈曲区内,纬纱的最大交织阻力和经纬纱屈曲交换程度密切相关;在黏滑区内,曲线呈现出一种震荡衰减趋势;纱线所受的交织阻力和被抽拔纱线根数几乎呈线性关系;同时抽拔2 根、3 根和4 根纱线的最大交织阻力对比于单纱抽拔的最大交织阻力的增幅分别是160% 、289% 和 389% ;纱罗组织的引入,有效增强了经纱对纬纱的握持性能。单纱抽拔试验结果表明,平纹/纱罗复合结构织物的纬纱所受最大交织阻力比平纹结构增加约20% 。多纱抽拔试验结果表明,交织阻力的最大增量约为65% 。
采用离心纺丝及预氧化碳化技术制备纳米聚丙烯腈基碳纤维,通过正交实验,对离心纺丝制备纳米聚丙烯腈纤维的4个工艺参数(溶液浓度、转速、针头直径和接收距离)进行优化组合,探究最佳的组合工艺;并对聚丙烯腈纤维预氧化工艺中的温度和时间进行组合优化。结果表明:在离心纺丝工艺中,浓度是对纤维直径影响最大的工艺参数,而转速则是对纤维均匀度影响最大的参数;预氧化处理的温度应在250℃以上,以280℃为宜,且适宜的预氧化时间为2h。
为获得低成本、高效率空气过滤材料,制备了一种以腈纶预氧化丝为主,并混入不同质量分数芳纶的复合滤材,对其形态、纤维缠结性能、力学性能、透气性、孔径尺寸和过滤性能等进行表征和分析。结果表明:纤维的直线段长度可用来表征滤材纤维缠结程度;添加芳纶,提高了纤维缠结程度和滤材的致密性,提高了滤材断裂强力和 断裂伸长率,减小滤材孔径尺寸;对于粒径≧1.0 μm 和≧2.5 μm 的微粒,芳纶质量分数小于10% 时,复合滤材过滤效率无明显变化,芳纶质量分数大于10%时,复合滤材过滤效率随着芳纶质量分数增大而显著提高。
针对碳纤维多层织造过程中各层纬纱受力一致性需求,提出基于无急回特性曲柄摇杆机构串联转动-转动-移动副型基本杆组的轴向六连杆打纬机构,并给出刚体导引与机构几何关系相结合的尺度综合方法。在考虑钢筘极限位置和力传递性能的情况下,优化设计打纬机构,确定合理的机构尺寸和传动角。运动学仿真结果表明:钢筘极限位置和打纬动程的误差率均为0.06%,且在前死心时钢筘打纬加速度大,在后死心附近加速度变化较小,利于厚重织物打紧和机器降噪。轴向六连杆打纬机构驱动钢筘垂直作用于碳纤维多层织物的各层纬纱,受力均匀,且其尺度综合方法为考虑织造工艺、运动学性能和机构尺寸等特定要求的打纬机构设计与优化提供一定的理论基础和实验数据。
为提高聚苯胺导电层与基材之间的黏结牢度,以聚乙烯醇为共混高聚物,通过连续原位聚合法在对位芳纶纱线表面形成聚乙烯醇/聚苯胺导电层,制备得到芳纶/聚苯胺/聚乙烯醇复合导电纱。分析了导电纱的结构与性能,并研究了聚乙烯醇对聚苯胺导电层耐水洗和耐磨性的影响。结果表明:适量添加聚乙烯醇有助于提高导电纱导电层的结构规整性及电导率,随着聚乙烯醇质量分数的提高,导电纱的电导率呈先上升后下降的趋势,当聚乙烯醇占苯胺的质量分数为4.30%时,制得的复合导电纱线的电导率最高,达到(1.120±0.198) S/cm;聚乙烯醇的添加和质量分数的提高,有助于聚苯胺导电层耐水洗性及在较小外力作用下的耐磨性的提高。
为制备超高分子量聚乙烯/聚苯胺复合导电纱线,以超高分子量聚乙烯(Ultra High Molecular Weight Polyethylene,UHMWPE)长丝纱为基材,对其进行常压等离子体预处理后采用基于原位聚合的纱线连续导电处理方法制备了超高分子量聚乙烯/聚苯胺(UHMWPE/PANI)复合导电纱线。利用制得的复合导电纱线制备了圆筒状纬平针织物作为应变传感器,进行了传感织物的应变-电阻传感性能研究。研究结果表明:导电针织物表现出明显的应变-电阻传感性能,其电阻随应变的增大先增大,至一定值后随着应变的增大而减小。传感织物具有较高的敏感度,在应变小于20%时,其传感因子可达30以上。多次拉伸时,传感织物的传感重复性逐渐提高,拉伸3次以后,传感织物表现出良好的传感重复性。
为提升芳纶织物的防穿刺效果,采用氧等离子体表面处理技术改性的芳纶1414织物与环氧树脂复合制备环氧芳纶复合体。分析了等离子体处理对织物功能改性的影响,研究了环氧树脂涂覆织物后复合体的防刺性能。结果表明:采用氧等离子体处理,在处理功率为600 W、处理18 min时,织物表面纤维刻蚀明显,含氧基团增多,润湿性提高,但织物拉伸强度有所下降;当环氧树脂涂覆在等离子体改性后的芳纶织物上,树脂中环氧基团与芳纶中含氧活性基团键合牢固,复合体黏结强度较好,拉伸强度较未经处理的芳纶织物增加了7.89%,复合体防穿刺效果较普通芳纶1414织物提升显著,且多层组合结构的防刺效果更优异。
为提高活性碳纤维对有色废水的吸附效率,以牛角瓜纤维为前驱体,采用磷酸活化、高温炭化工艺制备了具有高中空结构的活性碳纤维。采用扫描电镜/能谱仪、红外光谱仪等表征其微观形貌及化学结构,分析了所制备活性碳纤维对水溶液中亚甲基蓝的吸附性能与吸附机制。结果表明:牛角瓜活性碳纤维的平均中空度大于92%,具有粗糙表面和发达介孔结构,比表面积和平均孔径分别为1 244.812 m 2/g和3.744 nm;活性碳纤维表面富含O、P元素,构成了活性表面;亚甲基蓝溶液(100 mg/L)的饱和吸附量为198.840 mg/g,该吸附满足准二级动力学方程,同时符合Freundlich模型,以多层吸附为主。
为提升柔性防弹服的防弹性能,将超高分子质量聚乙烯平纹织物用于单向铺层材料中,以增强材料整体的能量吸收性能。通过穿透性弹道实验发现:由超高分子质量聚乙烯纤维制成的机织物在冲击过程中对受到的剪切作用有较好的抵御效果;单向铺层材料对于横向拉伸作用,有较好的防护作用。基于这种结论,设计了复合型防弹布层。测试结果表明,机织物结构放置在靠近弹丸冲击的一侧,单向铺层材料对于横向拉伸作用,有较好的防护作用。基于这种结论,设计了复合型防弹材料。测试结果表明,机织物放置在靠近弹丸冲击的一侧,单向铺层材料放置在远离弹丸冲击的一侧,这种结构有利于防弹复合材料性能的提升。当复合型防弹材料布中机织物与单向铺层材料质量比为1:3,其防弹性能最好。
为增强聚酰亚胺纤维的界面黏附性能,采用氧等离子体技术对聚酰亚胺纤维进行不同时间的改性处理,借助X射线光电子能谱仪、场发射扫描电子显微镜、接触角表面性能测定仪,以及单纤维碎裂法等分析改性处理对聚酰亚胺纤维表面性能的影响。结果表明:在气压为10 Pa,功率为100 W的工艺条件下,采用氧等离子体处理4 min时聚酰亚胺纤维表面改性效果最佳;与原丝相比,此时纤维表面O与C元素含量比增加了108%,含氧基团C—O、C=O的含量分别由7.6%、10.3%增加到20.4%、19.2%;纤维表面产生均匀致密的微裂缝,其与树脂间界面剪切强度由29.88 MPa增加到46.13 MPa,增强率达54%;聚酰亚胺纤维与水的接触角从110°左右减小至55°以下,由疏水表面变为亲水表面。
为提高鞋中底基材的抗穿刺性与柔韧性,降低成本,通过玄武岩基机织物增强和热压加固的工艺制备抗穿刺鞋中底基材,分析了低熔点聚酯纤维比例对鞋中底基材拉伸、顶破和静态穿刺头A、B、C性能的影响。结果表明:随着低熔点聚酯纤维(LMPET)含量的增加,抗穿刺强力先增强后逐渐减弱;当低熔点纤维含量为30%时,鞋中底基材的拉伸载荷为793.6 N(未热压)和759.9 N(热压),顶破载荷为445.5 N(未热压)和767.9 N(热压);鞋中底基材对不同形状的穿刺头的平均静态抗穿刺力分别为329.0 N(未热压)和392.4 N(热压);热黏合加固对顶破和抗穿刺性能的提升效果显著。
为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。
为提高聚苯硫醚纤维的光稳定性,采用熔融复合纺丝技术,制备了一系列聚苯硫醚石墨烯(PPS-G)纳米复合纤维。表征了氙灯老化处理前后纳米复合纤维的力学性能保持率和熔融行为,探索了石墨烯对纳米复合纤维紫外光稳定性的增强机制。结果表明:老化处理192 h后,随着石墨烯质量分数的提高,纳米复合纤维的力学性能保持率显著增加。当石墨烯质量分数为1.0 %时,纳米复合纤维的断裂强度和断裂伸长保持率分别为80.2 %和90.6 %,相比纯纤维分别提高了23.08 %和26.1 %;光老化对PPS-G-1.0纳米复合纤维熔点的影响明显减小,纯纤维的熔点下降幅度为7.1℃,而PPS-G-1.0 纳米复合纤维熔点仅下降3.0℃;石墨烯对聚苯硫醚纤维的光稳定性具有很好的增强效果。
为提升玄武岩纤维与基体的界面相容性,采用偶联剂KH550改性后的纳米SiO2对玄武岩纤维表面进行粗糙化改性处理。分析了改性前后玄武岩纤维的表面形貌和化学结构,研究了纳米SiO2质量分数对玄武岩纤维力学性能、摩擦因数、吸湿性能的影响。结果表明:经纳米SiO2改性后,玄武岩纤维表面的粗糙度和比表面积增大,摩擦性能和吸湿性能显著增加,在纳米SiO2质量分数为5%时,玄武岩纤维摩擦因数由0.255提升至0.280,透湿率也提高至0.65%;与未改性的玄武岩纤维相比,改性后的玄武岩纤维表面出现了C—H键,且Si—O—Si键对应的振动峰强度变强,提高了纤维表面的极性;改性后玄武岩纤维的拉伸力学性能有一定提高,随着纳米SiO2质量分数的增加,玄武岩纤维的力学性能先上升后下降,当纳米SiO2质量分数为3% 时,其拉伸断裂强度最高可达40 cN/tex。
为解决超高分子量聚乙烯(UHMWPE)纤维难以上染的问题,筛选出结构平面性良好的高疏水染料对UHMWPE纤维进行染色。通过染色后纤维K/S值、染料与纤维的亲和力、分配系数、染色热和染色熵等热力学参数的测定,研究了高疏水染料结构中疏水基团数目及其链长、硝基等强极性基团对纤维染色性能的影响规律,并分析了染料溶解度参数对其与纤维染色性能之间的相关性。结果表明:高疏水染料对UHMWPE纤维染色可获得高表观深度;染料的疏水性及其溶解度参数是影响其对UHMWPE纤维染色性能的重要因素;就染料母体结构而言,偶氮结构较蒽醌结构对UHMWPE纤维易于获得良好的染色性能。
为研究聚酰亚胺纤维作为纺织服用纤维的热舒适性能,分别以聚酰亚胺纤维和聚酰亚胺针织物为研究对象,通过热重分析仪研究纤维的热力学特征,并对纤维的耐热性能进行测试,同时讨论织物结构对聚酰亚胺针织物阻燃性、保暖性及透气性能的影响。结果表明:可服用聚酰亚胺纤维有较好的耐热性能,在570℃左右开始发生热分解,在200℃下强度损失率较低,处理1.5 h后纤维强度仍可保持原纤维强度的80%左右;聚酰亚胺纤维织物有较好的阻燃性能,其极限氧指数均大于45%,且随织物面密度的增加,阻燃性增强;聚酰亚胺织物的保暖性受织物结构影响较大,对于结构稀松的织物,随透气量的增加保暖性不断下降,同时还受织物厚度的影响,在一定条件下,厚度对织物保暖性的影响起主导作用。
为分析三维编织复合材料拉伸性能和失效机制,分别以碳纤维和芳纶纤维为轴纱和编织纱织造了三维五向、三维六向碳/芳纶混编复合材料。采用数字图像相关法采集试样在单轴拉伸过程中表面全场应变信息得到的泊松比。结果表明:三维编织复合材料泊松比受编织结构的影响较大,同种编织结构下,碳纤维为轴纱的复合材料基本保持了碳纤维三维编织复合材料的拉伸强度和模量,同时提高了断裂伸长率;芳纶纤维为轴纱的复合材料则显著提高了断裂伸长率,但拉伸强度和模量损失较为明显;同种混编方式下,三维五向编织复合材料的拉伸强度和拉伸模量较三维六向高,断裂伸长率无明显差异。编织纱分别为碳纤维和芳纶纤维的三维编织复合材料高应变区分别类似点阵分布和波浪线分布,三维五向和三维六向编织复合材料高应变区分别呈均匀分散分布和横向分布。
为开发高性能、低成本的锂硫电池正极储硫材料,利用天然生物质纤维兔毛为前驱体,经预处理和炭化制备了具有杂原子掺杂的兔毛中空碳纤维(RC),并采用热熔融法制得硫/兔毛基碳纤维(S/RC)复合材料。探讨了不同炭化温度对碳纤维形貌结构、S/RC复合材料晶型结构与电导率、锂硫电池的电化学性能及循环充放电稳定性的影响。结果表明:预处理温度为300 ℃,炭化温度为800 ℃时,制备的兔毛基中空碳纤维的形貌结构最好,用其作为正极材料制备的电池首次放电比容量达899 mA·h/g,在0.5C倍率下300次循环后放电比容量为598 mA·h/g,仍保持原始比容量的66.52%;在高倍率条件下该电池仍具有较高的放电比容量,1C和2C倍率下放电比容量分别为543.8和505.4 mA·h/g。
为增强聚酰亚胺纤维的力学性能,促进其在复合材料领域的应用,基于高性能聚合物纤维的结构设计,将杂环二胺单体5-氨基-2- (对氨基苯基)苯并咪唑引入到3,3',4,4'-联苯四羧酸二酐和对苯二胺的聚酰亚胺刚性骨架中得到纺丝溶液,通过干法纺丝技术制备得到聚酰亚胺纤维,研究了纤维化学结构和聚集态结构与纤维力学性能的关系,并系统评价了纤维的热性能和抗紫外光辐照性能。结果表明:聚酰亚胺纤维的拉伸强度和初始模量分别达到4.04、130 GPa,这得益于其聚合物分子链沿纤维轴向的高度取向性及分子链间形成的氢键作用;其玻璃化转变温度和热质量损失10%时温度分别为324、587 ℃,经168 h 紫外光辐照后,拉伸强度保持率为92%,具有良好的耐热性和优异的抗紫外光辐照性能。