Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 175-181.doi: 10.13475/j.fzxb.20181002007

• Comprehensive Review • Previous Articles     Next Articles

Progress of noise reduction product based on fiber materials

LI Huiqin1,2(), ZHANG Nan1,2, WEN Xiaodan1,2, GONG Jixian1,2, ZHAO Xiaoming1,2, WANG Zhishuai1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2018-10-11 Revised:2019-12-10 Online:2020-03-15 Published:2020-03-27

Abstract:

In order to improve the performance of fiber material structure for noise reduction, research progress in noise reduction products based on fiber materials was presented in this review. The noise reduction products based on fiber materials was classified into three categories, i.e. multilayer porous materials, combination of porous materials with resonance materials, and combination of porous materials with damping materials. In this review, the construction method, structure composition, noise reduction effect and acting mechanism of various noise reduction structures were briefly analyzed, and their future development in the field of noise reduction was discussed. The prospective applications and development of fiber materials in the field of noise reduction were presented. It is pointed out that fineness, environmental friendliness and multi-functionalization are the trend for the noise reduction functional fiber aggregation.

Key words: noise reduction, fiber, noise reduction product, noise control, sound absorption, sound insulation

CLC Number: 

  • TS101.3

Fig.1

Sketch of sound absorption mechanism"

Fig.2

Sandwich structure formed by staple fiber and nonwovens"

Fig.3

Sandwich structure formed by two types of nonwovens"

Fig.4

Microporous fiber composite sound-absorbing panel"

Fig.5

Micro perforated panel"

Fig.6

Samples of several laminated structures. (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5"

[1] 张京. 基于城市环境噪声污染与监测技术研究[J]. 环境与发展, 2019,31(8):139-140.
ZHANG Jing. Research on noise pollution and monitoring technology based on urban environment[J]. Environment & Development, 2019,31(8):139-140.
[2] 彭敏, 赵晓明. 汽车用吸声非织造材料的研究进展[J]. 成都纺织高等专科学校学报, 2017,34(1):230-235.
PENG Min, ZHAO Xiaoming. Research progress of sound absorbing nonwovens for automobiles[J]. Journal of Chengdu Textile College, 2017,34(1):230-235.
[3] 白媛, 钱晓明. 汽车降噪用非织造材料的应用及展望[J]. 产业用纺织品, 2011,29(5):8-11.
BAI Yuan, QIAN Xiaoming. The applications and prospects of nonwovens for automotive noise reduc-tion[J]. Technical Textiles, 2011,29(5):8-11.
[4] 郑红, 沈贤永, 林如勤, 等. 试论城市环境噪声污染控制对策[J]. 节能与环保, 2019(4):42-43.
ZHENG Hong, SHEN Xianyong, LIN Ruqin, et al. On the control measures of urban environmental noise pollution[J]. Energy Conservation & Environmental Protection, 2019(4):42-43.
[5] 李辉芹, 范晓丹, 张春春, 等. 纤维基柔性吸声降噪材料的研究现状与发展趋势[J]. 纺织导报, 2017(9):67-69.
LI Huiqin, FAN Xiaodan, ZHANG Chunchun, et al. Research status and development trend of fiber-based flexible sound adsorption and noise reduction materials[J]. China Textile Leader, 2017(9):67-69.
[6] 朱晓娜, 左保齐. 纺织品吸声隔音材料研究进展[J]. 现代丝绸科学与技术, 2010,25(2):34-37.
ZHU Xiaona, ZUO Baoqi. Progress in research of textile sound absorption and sound insulation materials[J]. Modern Silk Science & Technology, 2010,25(2):34-37.
[7] HAN M, REN S W, XIN F X, et al. Sound absorption coefficient optimization of gradient sintered metal fiber felts[J]. Science China Technological Sciences, 2016,59(5):699-708.
[8] 洪杰. 单孔中空涤纶增强橡胶基复合材料吸声性能[J]. 玻璃钢/复合材料, 2019,300(1):56-62.
HONG Jie. Sound absorption properties of single-hole hollow polyester reinforced rubber composites[J]. Fiber Reinforced Plastics/Composites, 2019,300(1):56-62.
[9] LIU Z, ZHAN J, FARD M, et al. Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel[J]. Applied Acoustics, 2017,121:25-32.
[10] GAI X L, XING T, LI X H, et al. Sound absorption properties of microperforated panel with membrane cell and mass blocks composite structure[J]. Applied Acoustics, 2018,137:98-107.
[11] HASINA M, HOSSEINI F M, MUSHTAK A A, et al. Acoustic absorption of natural fiber composites[J]. Journal of Engineering, 2016(7):1-11.
[12] SAGARTZAZU X, HERVELLA-NIETO L, PAGALDAY J M. Review in sound absorbing materials[J]. Archives of Computational Methods in Engineering, 2008,15(3):311-342.
[13] 彭敏, 赵晓明. 纺织材料的吸声隔声机理及研究进展[J]. 成都纺织高等专科学校学报, 2016,33(4):173-177.
PENG Min, ZHAO Xiaoming. Sound absorption and sound insulation mechanism and research progress of textile materials[J]. Journal of Chengdu Textile College, 2016,33(4):173-177.
[14] TANG X, YAN X. Multi-layer fibrous structures for noise reduction[J]. Journal of The Textile Institute, 2017,108(12):2096-2106.
[15] 李想, 陈金静, 张一风. 涤纶机织物降噪音性能的研究[J]. 纺织导报, 2013(10):74-78.
LI Xiang, CHEN Jinjing, ZHANG Yifeng. A study on the noise-reduction property of polyester woven fabric[J]. China Textile Leader, 2013(10):74-78.
[16] 范晓丹. 机织物结构与吸声隔音性能关系研究[D]. 天津:天津工业大学, 2018: 41-52.
FAN Xiaodan. Study on relationship between fabric structure and noise reduction performance[D]. Tianjin: Tianjin Polytechnic University, 2018: 41-52.
[17] CHEN Y, JIANG N. Carbonized and activated non-woven as high performance acoustic materials. II. noise insulation[J]. Textile Research Journal, 2009,79(3):213-218.
[18] 王飞艳, 刘其霞, 季涛, 等. 水泥基复合结构吸声材料的制备及表征[J]. 南通大学学报(自然科学版), 2014,13(3):37-42.
WANG Feiyan, LIU Qixia, JI Tao, et al. Preparation and characterization of cement-based combined sound absorption material[J]. Journal of Nantong University (Natural Science Edition), 2014,13(3):37-42.
[19] LIU J, BAO W, SHI L, et al. General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers[J]. Applied Acoustics, 2014,76(1):128-137.
[20] 王双闪, 刘建立, 刘健, 等. 非织造材料基三明治结构吸声体的吸声性能[J]. 上海纺织科技, 2013(12):56-60.
WANG Shuangshan, LIU Jianli, LIU Jian, et al. Sound absorption property study of sandwich sound absorber made of non-woven material[J]. Shanghai Textile Science & Technology, 2013(12):56-60.
[21] LIN J H, LI T T, HSU Y H, et al. Preparation and property evaluation of sound-absorbing/ thermal-insulating PU composite boards with cushion protec-tion[J]. Fibers & Polymers, 2014,15(7):1478-1483.
[22] ELIKEL D C, BABAARSLAN O. Effect of bicomponent fibers on sound absorption properties of multilayer nonwovens[J]. Journal of Engineered Fibers & Fabrics, 2017,12(4):15-25.
[23] 汤慧萍, 朱纪磊, 葛渊, 等. 纤维多孔材料梯度结构的吸声性能研究[J]. 稀有金属材料与工程, 2007,36(12):2220-2223.
TANG Huiping, ZHU Jilei, GE Yuan, et al. Sound absorbing characteristics of fibrous porous materials gradient structure[J]. Rare Metal Materials and Engineering, 2007,36(12):2220-2223.
[24] TANG X, YAN X. Acoustic energy absorption properties of fibrous materials: a review[J]. Composites: Part A: Applied Science & Manufacturing, 2017,101:360-380.
[25] ZHU J, SUN J, TANG H P, et al. Gradient-structural optimization of metal fiber porous materials for sound absorption[J]. Powder Technology, 2016,301:1235-1241.
[26] 敖庆波, 王建忠, 李爱君, 等. 梯度纤维多孔材料的吸声特性及结构优化[J]. 稀有金属材料与工程, 2018,47(2):697-700.
AO Qingbo, WANG Jianzhong, LI Aijun, et al. Sound absorption characteristics and structure optimization of gradient fibrous porous materials[J]. Rare Metal Materials and Engineering, 2018,47(2):697-700.
[27] SUN F, CHEN H, WU J, et al. Sound absorbing characteristics of fibrous metal materials at high temperatures[J]. Applied Acoustics, 2010,71(3):221-235.
[28] 张波, 陈天宁. 烧结金属纤维材料的吸声模型研究[J]. 西安交通大学学报, 2008,42(3):328-332.
ZHANG Bo, CHEN Tianning. Sound absorption model of sintered fibrous metal[J]. Journal of Xi'an Jiaotong University, 2008,42(3):328-332.
[29] 吕丽华, 毕吉红, 于翔. 废弃纤维吸声复合材料的制备及其吸声性能[J]. 纺织学报, 2016,37(2):39-43.
LU Lihua, BI Jihong, YU Xiang. Fabrication and sound absorption properties of waste fiber composite materials[J]. Journal of Textile Research, 2016,37(2):39-43.
[30] 田一, 陈建胜, 刘主光, 等. 微孔纤维复合吸声板在城市变电站降噪中的应用[J]. 智能电网, 2016,4(10):988-992.
TIAN Yi, CHEN Jiansheng, LIU Zhuguang, et al. Application of microporous fiber composite acoustic board in the noise control engineering of urban substations[J]. Smart Grid, 2016,4(10):988-992.
[31] 祝志祥, 林冶, 聂景凯, 等. 变电站(换流站)低频噪声吸声材料的研究[J]. 华东电力, 2011,39(3):357-361.
ZHU Zhixiang, LIN Ye, NIE Jingkai, et al. Study on low-frequency sound-absorbing materials for substations (converter stations)[J]. East China Electric Power, 2011,39(3):357-361.
[32] LEE Y Y, LEE E W M, NG C F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity[J]. Journal of Sound & Vibration, 2005,287(1):227-243.
[33] FAN C, NIE J K, XIAO W M, et al. Research on sound-absorption materials for substation noise reduc-tion[J]. Electric Power, 2014,47(4):144-147.
[34] FATIMA S, MOHANTY A R. Acoustical and fire-retardant properties of jute composite materials[J]. Applied Acoustics, 2011,72(2):108-114.
[35] BANSOD P V, TEJA T S, MOHANTY A R. Improvement of the sound absorption performance of jute felt-based sound absorbers using micro-perforated panels[J]. Journal of Low Frequency Noise Vibration & Active Control, 2017,36(4):376-398.
[36] 裴春明, 周兵, 李登科, 等. 多孔材料和微穿孔板复合吸声结构研究[J]. 噪声与振动控制, 2015,35(5):35-38.
PEI Chunming, ZHOU Bing, LI Dengke, et al. Study on the composite sound absorber made up of porous materials and MPP[J]. Noise and Vibration control, 2015,35(5):35-38.
[37] 张春春, 巩继贤, 范晓丹, 等. 柔性吸声隔音降噪纺织复合材料[J]. 复合材料学报, 2018,35(8):1983-1993.
ZHANG Chunchun, GONG Jixian, FAN Xiaodan, et al. Sound-absorbing and sound insulation soft composite materials of textile for noise reduction[J]. Acta Materiae Compositae Sinica, 2018,35(8):1983-1993.
[38] 张隶新, 穆晓军. 高铁车轮阻尼环减振降噪实验研究[J]. 制造业自动化, 2016,38(2):135-137.
ZHANG Lixin, MU Xiaojun. Experiment of vibration and acoustic of damping ring installed on high-speed rail wheel[J]. Manufacturing Automation, 2016,38(2):135-137.
[39] 王明旭, 穆钟涛, 曹宪周, 等. 阻尼减振技术在非织造布用针刺机中的应用[J]. 纺织导报, 2013(7):96-98.
WANG Mingxu, MU Zhongtao, CAO Xianzhou, et al. Damping technology used in nonwoven needle loom[J]. China Textile Leader, 2013(7):96-98.
[40] 姚跃飞, 高磊, 杨琼丽, 等. 漂珠填充聚氯乙烯基复合材料的隔声性能[J]. 高分子材料科学与工程, 2009,25(11):61-64.
YAO Yuefei, GAO Lei, YANG Qiongli, et al. Sound insulation property of PVC matrix composite material filled with cenosphere fly ash[J]. Polymer Materials Science and Engineering, 2009,25(11):61-64.
[41] HAWORTH B, CHADWICK D, CHEN L, et al. Thermoplastic composite beam structures from mixtures of recycled HDPE and rubber crumb for acoustic energy absorption[J]. Journal of Thermoplastic Composite Materials, 2016,31(1):119-142.
[42] YAN J, KIM M S, KANG K M, et al. Evaluation of PP/clay composites as soundproofing material[J]. Polymers & Polymer Composites, 2014,22(1):65-72.
[43] KIM M S, YAN J, KANG K M, et al. Soundproofing properties of polypropylene/clay/carbon nanotube nanocomposites[J]. Journal of Applied Polymer Science, 2013,130(1):504-509.
[44] MAMTAZ H, FOULADI M H, NUAWI M Z, et al. Acoustic absorption of fibro-granular composite with cylindrical grains[J]. Applied Acoustics, 2017,126:58-67.
[45] 潘涵, 姚跃飞, 刘慧, 等. 玻璃纤维织物/PVC基复合材料的层合结构隔声性能[J]. 浙江理工大学学报, 2012,29(3):319-323.
PAN Han, YAO Yuefei, LIU Hui, et al. Sound insulation property of glass fabric/PVC composite materials' laminated structure[J]. Journal of Zhejiang Sci-Tech University, 2012,29(3):319-323.
[46] ZHOU X, JANG S, YAN X, et al. Damping acoustic properties of reclaimed rubber/seven-hole hollow polyester fibers composite materials[J]. Journal of Composite Materials, 2014,48(30):3719-3726.
[1] WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[4] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[5] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[6] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[7] WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165.
[8] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[9] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[10] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[11] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[12] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[13] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[14] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[15] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!