Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 51-56.doi: 10.13475/j.fzxb.20200805806

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes

DAI Yang1,2(), YANG Nannan1, XIAO Yuan1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2020-08-12 Revised:2021-01-29 Online:2021-06-15 Published:2021-06-25

Abstract:

In order to prepare a flexible humidity sensor with high sensitivity and more suitable for wearable use scenes, polyethylene terephthalate (PET) was used as a flexible substrate for making interdigital electrodes, and polyvinylpyrrolidone (PVP) and multi-walled carbon nanotubes (MWCNTs) were employed as the raw materials to prepare the spinning solution, and MWCNTs/PVP was deposited on a flexible PET substrate by electrospinning technology to make a flexible humidity sensor. The microstructure of the membrane was characterized and analyzed via the use of scanning electron microscopy, and the linearity, response/recovery time, repeatability and stability of the sensor were evaluated using the designed experimental devices. The results show that the output resistance of the flexible humidity sensor has a good linear relationship with the relative humidity, and the correlation coefficient is 0.97. The detectable relative humidity range is 40%-90%, the response time is 20 s, and the recovery time is 5 s. After 40 repeated measurements under 75% relative humidity, the sensor shows good repeatability and stability.

Key words: electrospinning, carbon nanotube, flexible wearable, humidity sensor, flexible substrate

CLC Number: 

  • TB32

Fig.1

PET substrate with interdigital electrodes"

Fig.2

Flexible humidity sensor"

Fig.3

Schematic diagram of a flexible humidity sensor"

Fig.4

Schematic diagram of humidity test system"

Fig.5

Schematic diagram of MWCNT adsorption mechanism based on PET substrate"

Fig.6

Simplified equivalent circuit diagram of MWCNTs"

Fig.7

SEM images of cross section and surface of flexible humidity sensor.(a) Cross section image (×1 000); (b) Surface image (×50 000)"

Fig.8

Relationship between resistance and relative humidity"

Fig.9

Sensing response curves of sodium chloride saturated salt solution(a), potassium chloride saturated salt solution (b)and clear water solution(c)"

Fig.10

Electrical signal response in environment of sodium chloride saturated salt solution"

[1] 范艳苹, 胡克勤, 陶仁中, 等. 智能纺织服装的发展现状与进展[J]. 染整技术, 2017, 39(7):1-6.
FAN Yanping, HU Keqin, TAO Renzhong, et al. Development status and progress of smart textile and clothing[J]. Textile Dyeing and Finishing Journal, 2017, 39(7):1-6.
[2] 张亦可, 贾凡, 桂澄, 等. 聚偏氟乙烯/FeCl 3复合纤维膜柔性传感器的制备及其性能 [J]. 纺织学报, 2020, 41(12):13-20.
ZHANG Yike, JIA Fan, GUI Cheng, et al. Preparation and performance of polyvinylidene fluoride/FeCl 3 composite fiber membrane flexible sensor [J]. Journal of Textile Research, 2020, 41(12):13-20.
[3] 孙倩, 阚燕, 李晓强, 等. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11):27-33.
SUN Qian, KAN Yan, LI Xiaoqiang, et al. Preparation and performance of polyacrylonitrile/cobalt chloride nanofiber colorimetric humidity sensor[J]. Journal of Textile Research, 2020, 41(11):27-33.
[4] ZHU P H, LIU Y, FANF Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14):4834-4842.
doi: 10.1021/acs.langmuir.8b04259
[5] TAKEI Y, MATSUMOTO K, SHIMOYAMA I. Wearable sweat monitoring sensor based on ionic liquid gel[C]// 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai:IEEE, 2016:924-925.
[6] KIM J, LEE M, SHIM H J, et al. Stretchable siliconnanorib bon electronics for skin prosthesis[J]. Nature Communications, 2014, 5(5):5747.
doi: 10.1038/ncomms6747
[7] BAE Y M, LEE Y H, KIM H S, et al. Polyimide-polyurethane/urea block copolymers for highly sensitive humidity sensor with low hysteresis[J]. Journal of Applied Polymer Science, 2017, 134:44973.
[8] NIARCHOS G, DUBOURG G, AFROUDAKIS G, et al. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications[J]. Sensors, 2017, 17(3):379-385.
doi: 10.3390/s17020379
[9] 段建瑞, 李斌, 李帅臻. 常用新型柔性传感器的研究进展[J]. 传感器与微系统, 2015, 34(11):1-4,11.
DUAN Jianrui, LI Bin, LI Shuaizhen. Research progress of commonly used new flexible sensors[J]. Transducer and Microsystem Technologies, 2015, 34(11):1-4,11.
[10] ZHANG D Z, TONG J, XIA B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly[J]. Sensors & Actuators B Chemical, 2014, 197(7):66-72.
[11] 章丹, 黄见秋, 王立峰. 基于LCP衬底的柔性湿度传感器研究[J]. 传感技术学报, 2017, 30(10):1478-1482.
ZHANG Dan, HUANG Jianqiu, WANG Lifeng. Research on flexible humidity sensor based on LCP substrate(English)[J]. Chinese Journal of Sensor and Actuators, 2017, 30(10):1478-1482.
[12] DUBOURG G, SEGKOS A, KATONA J, et al. Fabrication and characterization of flexible and miniaturized humidity sensors using screen-printed TiO2 nanoparticles as sensitive layer [J]. Sensors, 2017, 17(8):1854.
doi: 10.3390/s17081854
[13] 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1):114-120.
WANG Guixin, PEI Zhibin, YE Changhui. Study on inkjet printing preparation and performance of self-powered flexible graphene oxide humidity sensor[J]. Journal of Inorganic Materials, 2019, 34(1):114-120.
doi: 10.15541/jim20180164
[14] 钱巍, 李敏, 余厚林, 等. 柔性还原氧化石墨烯多功能传感器制备及性能研究[J]. 浙江理工大学学报(自然科学版), 2018, 39(4):423-428.
QIAN Wei, LI Min, YU Houlin, et al. Preparation and performance of flexible reduced graphene oxide multifunctional sensor[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2018, 39(4):423-428.
[15] 李法利, 李晟斌, 曹晋玮, 等. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1):1059-1068.
LI Fali, LI Shengbin, CAO Jinwei, et al. Elastic sensitive materials and sensor components[J]. Materials Reports, 2020, 34(1):1059-1068.
[16] 郑富中, 吴英, 张杰, 等. 基于单壁碳纳米管的压阻式柔性传感器[J]. 传感技术学报, 2019, 32(7):1009-1015.
ZHENG Fuzhong, WU Ying, ZHANG Jie, et al. Piezoresistive flexible sensor based on single-walled carbon nanotubes[J]. Chinese Journal of Sensor and Actuators, 2019, 32(7):1009-1015.
[17] 尚旭, 景希玮, 徐健, 等. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6):883-890.
SHANG Xu, JING Xiwei, XU Jian, et al. The effect of polyvinylpyrrolidone with different molecular weights on the dispersion properties of multi-walled carbon nanotubes[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(6):883-890.
[18] 姚伟. 有机挥发性气体传感器的制备及特性研究[D]. 成都: 电子科技大学, 2014:5-6.
YAO Wei. Preparation and characteristics of organic volatile gas sensors[D]. Chengdu: University of Electronic Science and Technology of China, 2014:5-6.
[19] 李承臻. 柔性湿度传感器的制备与湿敏性能研究[D]. 成都: 电子科技大学, 2019:9.
LI Chengzhen. Research on the preparation and humidity sensitivity of a flexible humidity sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2019:9.
[1] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[2] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[3] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[4] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[5] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[6] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[7] WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154.
[8] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[9] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[10] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[11] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[12] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[13] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[14] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[15] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!