Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 209-215.doi: 10.13475/j.fzxb.20210305007

• Comprehensive Review • Previous Articles     Next Articles

Research progress in high efficiency and low resistance air filter materials

YANG Jizhen1,2,3, LIU Qiangfei1,2,3, HE Ruidong1,2,3, WU Shaohua1, HE Hongwei1,2,3, NING Xin1,2,3, ZHOU Rong1,2,3(), DONG Xianglin4, QI Guishan4   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shandong Center for Engineered Nonwovens, Qingdao, Shandong 266071, China
    4. Shandong Xingguo Xinli Environmental Protection Technology Co., Ltd., Zibo, Shandong 255000, China
  • Received:2021-03-12 Revised:2021-11-29 Online:2022-10-15 Published:2022-10-28
  • Contact: ZHOU Rong E-mail:rzhouqdu@126.com

Abstract:

In order to develop high efficiency and low resistance air filtration materials, solve the imbalance between filtration efficiency and filtration resistance in the current research, and further improve the quality factor for filtration materials, this paper reviews the relevant research on nanofiber membrane, melt-blown filtration materials and high-temperature resistant needle filter mat in recent years.The research status of electret filtration materials, micro-nano structure filtration materials, gradient structuring and finishing methods to improve the filtration efficiency of materials are reviewed.The influencing factors of charge storage capacity of materials are analyzed and discussed. The preparation methods of micro-nano structure materials are summarized. The advantages and disadvantages of gradient structuring and finishing methods for improving filtration efficiency were compared. It is concluded that the electret and micro-nano structured filtration materials will draw great attention from researchers because of their great potentials in the future field of air purification.

Key words: electrospinning, meltblown material, air filtration, electret, micro-nano structure, high efficiency and low resistance

CLC Number: 

  • TS174

Tab.1

Comparison of different staging methods"

驻极方式 优点 缺点
静电驻极 电荷储存能力强 仅适用于静电纺丝工艺,受材料影响较大
电晕驻极 工艺成熟,适用范围广泛,更适合面密度较大的材料,电荷主要储存在材料表面 电荷逸散较快,驻极体不稳定,过滤性能难以达到峰值
摩擦驻极 驻极效果好,电荷分布在材料内部 仅适用于带有不同电性的纤维
水驻极 不需使用高压电,驻极体稳定,保存时间长 工艺不成熟,具体应用难度大

Tab.2

Advantages and disadvantages of different ways to improve filtration efficiency"

处理方式 过滤效率 过滤阻力 容尘量 成本
浸渍 一般 一般 一般 一般
涂层 一般 一般 一般
覆膜 初始高,后期趋于平稳
梯度结构设计 较高
[1] LI Yuyao, YIN Xia, YU Jianyong, et al. Electrospun nanofibers for high-performance air filtration[J]. Composites Communications, 2019, 15: 6-19.
doi: 10.1016/j.coco.2019.06.003
[2] YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199.
[3] BAI Mingqi, WANG Jian, ZHOU Rong, et al. Polyphenylene sulfide fabric with enhanced oxidation resistance and hydrophobicity through polybenzoxazine surface coating for emission control in harsh environ-ment[J]. Journal of Hazardous Materials, 2022. DOI: 10.2139/ssrn.3973894.
doi: 10.2139/ssrn.3973894
[4] 王娜. PM2.5空气过滤用静电纺微/纳纤维材料的结构设计及性能研究[D]. 上海: 东华大学, 2015:3-4.
WANG Na. Tunable fabrication of micro-nanostructured electrospun fibrous membranes and their application in PM2.5 air filtration[D]. Shanghai: Donghua University, 2015: 3-4.
[5] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[6] ZHAO Xinglei, LI Yuyao, HUA Ting, et al. Cleanable air filter transferring moisture and effectively capturing PM2.5[J]. Small, 2017.DOI: 10.1002/smll.201603306.
doi: 10.1002/smll.201603306
[7] YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2020.122254.
doi: 10.1016/j.jhazmat.2020.122254
[8] WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for highefficiency air filtration[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23985-23994.
[9] LI Yuyao, YIN Xia, SI Yang, et al. All-polymer hybrid electret fibers for high-efficiency and low-resistance filter media[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125626.
doi: 10.1016/j.cej.2020.125626
[10] DING Xinxin, LI Yuyao, SI Yang, et al. Electrospun polyvinylidene fluoride/SiO2 nanofibrous membranes with enhanced electret property for efficient air filtra-tion[J]. Composites Communications, 2019, 13: 57-62.
doi: 10.1016/j.coco.2019.02.008
[11] 张剑锋. 熔喷聚乳酸空气净化材料的微观结构与驻极体性能和过滤性能相关性研究[D]. 杭州: 杭州电子科技大学, 2020:27-39.
ZHANG Jianfeng. Study on correlation between the microstructure and performance of electrets and filtration performance of melt-blown PLA electret air purification materials[D]. Hangzhou: Hangzhou Dianzi University, 2020: 27-39.
[12] LIU Jinxin, ZHANG Haifeng, GONG Hugh, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40592-40601.
[13] 刘妙峥. 有机添加剂杂化聚丙烯熔喷滤料的性能研究[D]. 上海: 东华大学, 2018:7-9.
LIU Miaozheng. Study on properties of organic additive melt blown polypropylene filter material[D]. Shanghai: Donghua University, 2018:7-9.
[14] FAN Fengru, TIAN Zhongqun, WANG Zhonglin. Flexible triboelectric generator![J]. Nano Energy, 2012, 1(2): 328-334.
doi: 10.1016/j.nanoen.2012.01.004
[15] WU Changsheng, WANG Aurelia C, DING Wenbo, et al. Triboelectric nanogenerator: a foundation of the energy for the new era[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201802906.
doi: 10.1002/aenm.201802906
[16] WANG Yuxiao, XU Yukang, WANG Dan, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulatematter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48437-48449.
[17] ZHANG Ruichao, XU Qi, BAI Suo, et al. Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105434.
doi: 10.1016/j.nanoen.2020.105434
[18] LIM C T. Nanofiber technology: current status and emerging developments[J]. Progress in Polymer Science, 2017, 70: l-17.
[19] LI Yuyao, CAO Leitao, YIN Xia, et al. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3[J]. Journal of Colloid and Interface Science, 2020, 578: 565-573.
doi: S0021-9797(20)30742-6 pmid: 32544628
[20] CAI Rongrong, LI Shuzheng, ZHANG Lizhi, et al. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture[J]. Science of the Total Environment, 2020. DOI: 10.1016/j.scitotenv.2020.138297.
doi: 10.1016/j.scitotenv.2020.138297
[21] 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(9):28-34.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019, 40(9): 28-34.
[22] 何宏升. 熔喷PS/PP非织造材料制备与性能研究[D]. 天津: 天津工业大学, 2018:7-8.
HE Hongsheng. Preparation and properties of melt-blown PS/PP nonwovens[D]. Tianjin: Tiangong University, 2018:7-8.
[23] 何宏升, 邓南平, 范兰兰, 等. 熔喷非织造技术的研究及应用进展[J]. 纺织导报, 2016(S1):71-80.
HE Hongsheng, DENG Nanping, FAN Lanlan, et al. Progress in the research and application of melt-blown nonw oven technology[J]. China Textile Leader, 2016(S1):71-80.
[24] WANG Qiannan, BAI Yuying, XIE Jianfei, et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292: 54-63.
doi: 10.1016/j.powtec.2016.01.008
[25] 申莹, 邓炳耀, 刘庆生, 等. 不同填充密度的梯度结构复合滤材的制备及其性能[J]. 纺织学报, 2017, 38(7):23-27.
SHEN Ying, DENG Bingyao, LIU Qingsheng, et al. Preparation and properties of gradient filter materials with different packing density[J]. Journal of Textile Research, 2017, 38 (7): 23-27.
[26] LIU Yongsheng, QIAN Xiaoming, ZHANG Heng, et al. Preparing micro/nano-fibrous filters for effective PM2.5 under low filtration resistance[J]. Chemical Engineering Science, 2020. DOI: 10.1016/j.ces.2020.115523.
doi: 10.1016/j.ces.2020.115523
[27] YANG Ming, CAO Keqin, SUI Lang, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[28] 刘培杰. 芳纶纳米纤维涂覆非织造滤材在高温过滤领域的应用[D]. 上海: 东华大学, 2018:16-39.
LIU Peijie. Application of aramid nanofiber coated nonwovens for high temperature filtration[D]. Shanghai: Donghua University, 2018:16-39.
[29] 燕芮. 对位芳纶纳米纤维/熔喷非织造复合过滤材料的制备及性能研究[D]. 上海: 东华大学, 2020:28-47.
YAN Rui. Fabrication and characterization of aramid nanofiber/meltblown nonwoven composites for air filtration[D]. Shanghai: Donghua University, 2020:28-47.
[30] 刘强飞, 吴韶华, 杨吉震, 等. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10):47-52.
LIU Qiangfei, WU Shaohua, YANG Jizhen, et al. Preparation and properties of polytetrafluoroethylene/phenylene sulfide needled felt modified by aramid nanofiber[J]. Journal of Textile Research, 2021, 42(10):47-52.
[31] 张美云, 罗晶晶, 杨斌, 等. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5):5158-5166.
ZHANG Meiyun, LUO Jingjing, YANG Bin, et al. Research progress of preparation and application of aramid nanofibers[J]. Meterals Reports, 2020, 34(5):5158-5166.
[32] 刘强飞, 周蓉, 吴韶华, 等. 烟气净化用高温过滤材料的功能性研究进展[J]. 棉纺织技术, 2021, 49(1):4-10.
LIU Qiangfei, ZHOU Rong, WU Shaohua, et al. Functional study progress of high temperature filter material for flue gas purification[J]. Cotton Textile Technology, 2021, 49(1):4-10.
[33] YU Yan, XIONG Siwei, HUANG Hao, et al. Fabrication and application of poly(phenylene sulfide) ultrafine fiber[J]. Reactive & Functional Polymers, 2020. DOI: 10.1016/j.reactfunctpolym.2020.104539.
doi: 10.1016/j.reactfunctpolym.2020.104539
[34] 覃俊, 陈丽萍, 何勇. 聚苯硫醚熔喷超细纤维的应用前景展望[J]. 纺织科技进展, 2020(10):1-5.
QIN Jun, CHEN Liping, HE Yong. Application prospect of poly(p-phenylene sulfide) melt blown superfine fiber[J]. Progress in Textile Science & Technology, 2020(10):1-5.
[35] 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016, 37(5):17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[ J]. Journal of Textile Research, 2016, 37(5):17-22.
[1] YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23.
[2] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
[3] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[4] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[5] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[6] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[7] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[8] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[9] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[10] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[11] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[12] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[13] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[14] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[15] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!