Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 20-27.doi: 10.13475/j.fzxb.20210307608

• Fiber Materials • Previous Articles     Next Articles

Effect of ultrasonic treatment on composition and structure of rabbit hair keratin

WANG Xiaoqing1,2, SHI Zhiming2(), LI Xiaoyu1   

  1. 1. College of Textile and Light Industry, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010080, China
    2. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
  • Received:2021-03-18 Revised:2021-10-29 Online:2022-04-15 Published:2022-04-20
  • Contact: SHI Zhiming E-mail:shizm@imut.edu.cn

Abstract:

In view of the destruction of disulfide bonds by increasing chemical reagents or high temperature treatment, resulting in the hydrolysis of amide bonds to generate small molecular polypeptides, ultrasonic treatment combined with reduction method was used to extract the keratin from the rabbit hair. The effects of ultrasonic treatment on the chemical composition and structure of rabbit hair keratin were investigated by protein electrophoresis meter, infrared spectrometer, fluorescence spectrometer and particle size analyzer. The results show that with the increase of ultrasonic treatment time, the amino acid composition of rabbit hair keratin remained constant, but the amino acid content decreased. The loss rate of cystine increased and the content of free sulfhydryl group firstly increases and then decreases, and the molecular weight increases gradually and mainly distribute in the range of 31-43 ku. The secondary structure changes from α-helix structure to β-sheet structure and random coil structure, and the particle size of the keratin decrease. The fluorescence spectra show that keratin has fixed structure and is not easy to agglomerate.

Key words: ultrasonic treatment, rabbit hair keratin, amino acid composition, molecular weight, α-helix, β-sheet, chemical structure

CLC Number: 

  • TS252.1

Fig.1

Analysis result of amino acid content"

Tab.1

Contents of different kinds of amino acids"

试样
编号
酸性氨基
酸含量/%
碱性氨基
酸含量/%
中性氨基
酸含量/%
总含
量/%
RT 19.23 13.31 61.41 93.95
UT-RH 18.62 12.95 59.42 90.99
UT-0 20.47 11.70 53.28 85.45
UT-1 21.25 11.69 53.88 86.82
UT-2 21.55 11.89 54.63 88.07
UT-3 21.22 12.14 54.94 88.30
UT-4 21.53 12.09 54.34 87.96

Fig.2

Effect of ultrasonic treatment on Gys and free sulfhydryl groups of keratins"

Fig.3

SDS-PAGE image of extracted rabbit hair keratin"

Fig.4

Infrared spectroscopy (a) and Raman spectroscopy (b) of rabbit hair keratin"

Tab.2

Secondary structure content of rabbit hair and keratin%"

试样
编号
α-螺
β-折
β-折叠/
无规卷曲
末端羧
无规卷
RH 43.73 9.66 38.98 7.63
UT-RH 7.63 7.63 49.86 3.37
UT-0 26.99 18.03 45.14 9.83
UT-1 33.52 15.23 44.15 7.11
UT-2 29.53 17.53 44.20 8.74
UT-3 10.72 48.36 11.86 29.06
UT-4 7.47 53.33 8.25 30.95

Fig.5

X-ray diffraction for rabbit hair and keratin"

Tab.3

Crystallinity index and lattice spacing"

试样
编号
结晶
度/%
衍射峰1 衍射峰2
2θ/(°) 晶面间距/nm 2θ/(°) 晶面间距/nm
RH 21.88 9.47 0.932 20.44 0.434
UT-RH 15.94 9.27 0.953 19.28 0.460
UT-0 2.85 9.31 0.949 19.42 0.456
UT-1 1.56 8.69 1.016 19.80 0.447
UT-2 1.08 9.07 0.974 19.62 0.452
UT-3 1.58 8.97 0.985 19.52 0.454
UT-4 1.19 8.49 1.040 19.58 0.453

Fig.6

Endogenous fluorescence spectra of rabbit hair keratin"

Fig.7

Particle size(a) and ζ-potential(b) of rabbit hair keratin"

[1] 黎淑淳. 从兔毛中提取L-精氨酸的研究[D]. 天津: 天津工业大学, 2017:13-18.
LI Shuchun. Study on extraction of L-arginine from rabbit hair[D]. Tianjin: Tiangong University, 2017:13-18.
[2] 贾如琰, 何玉凤, 王荣民, 等. 角蛋白的分子构成、提取及应用[J]. 化学通报, 2008, 71(4): 265-271.
JIA Ruyan, HE Yufeng, WANG Rongmin, et al. Advanced in structure, extract and applications of keratins[J]. Chemistry Bulletin, 2008, 71(4): 265-271.
[3] SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomaterials Science, 2017, 5(9): 1699-1735.
doi: 10.1039/C7BM00411G
[4] KIM S Y, PARK B J, LEE Y, et al. Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 142-151.
doi: 10.1016/j.jiec.2019.01.017
[5] ESPARZA Y, BANDARA N, ULLAH A, et al. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins[J]. Materials Science & Engineering C, 2018, 90: 446-453.
[6] BLACKBURN S, LEE G R. The reaction of wool keratin with alkali[J]. Biochimica Biophysica Acta, 1956, 19(3): 505-512.
doi: 10.1016/0006-3002(56)90474-7
[7] TIMMONS S F, BLANCHARD C R, SMITH R A. Method of making and cross-linking keratin-based films and sheets, US6124265[P]. 2000-09-26.
[8] GODDARD D R, MICHAELIS L. Derivatives of keratin[J]. Journal of Biological Chemistry, 1935, 112(1): 361-371.
doi: 10.1016/S0021-9258(18)74993-4
[9] ZHANG Y, ZHAO W, YANG R. Steam flash explosion assisted dissolution of keratin from feathers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2036-2042.
[10] GHOSH A, CLERENS S, DEB-CHOUDHURY S, et al. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin[J]. Polymer Degradation and Stability, 2014, 108: 108-115.
doi: 10.1016/j.polymdegradstab.2014.06.007
[11] ANTUNES E, CÉLIA F C, AZOIA N G, et al. The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data[J]. RSC Advances, 2015, 5(16): 12365-12371.
doi: 10.1039/C4RA13901A
[12] IESEL V, LOEY A V, HENDRICKX M. Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment[J]. Journal of Agricultural and Food Chemistry, 2005, 53(14): 5726-5733.
doi: 10.1021/jf050289+
[13] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680-685.
doi: 10.1038/227680a0
[14] SINGH C. Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins[J]. Biophysical Chemistry, 1999, 80(1): 7-20.
doi: 10.1016/S0301-4622(99)00060-5
[15] 袁久刚, 钱伟伟, 朱华君, 等. 超声波处理对羊毛纤维结构的影响[J]. 染整技术, 2013, 35(12): 11-14.
YUAN Jiugang, QIAN Weiwei, ZHU Huajun, et al. Influence of ultrasonic treatment on structure of wool fiber[J]. Textile Dyeing and Finishing Journal, 2013, 35(12): 11-14.
[16] 张林. 人发角蛋白的提取,纤维制备及对棉织物整理研究[D]. 青岛: 青岛大学, 2015:39-40.
ZHANG Lin. Study on the extraction of human hair keratin, preparation of fibers and finishing of cotton fabrics[D]. Qingdao: Qingdao University, 2015: 39-40.
[17] MOORE K E, MANGOS D N, SLATTERY A D, et al. Wool deconstruction using a benign eutectic melt[J]. RSC Advances, 2016, 6(24): 20095-20101.
doi: 10.1039/C5RA26516A
[18] ZOCCOLA M, ALUIGI A, PATRUCCO A, et al. Microwave-assisted chemical-free hydrolysis of wool keratin[J]. Textile Research Journal, 2012, 82(19): 2006-2018.
doi: 10.1177/0040517512452948
[19] RINTOUL L, CARTER E A, STEWART S D, et al. Keratin orientation in wool and feathers by polarized Raman spectroscopy[J]. Biopolymers, 2000, 57(1): 19-28.
doi: 10.1002/(SICI)1097-0282(2000)57:1<19::AID-BIP4>3.0.CO;2-Z
[20] LAURENT C M, DYKE J M, COOK R B, et al. Spectroscopy on the wing: investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy[J]. Journal of Structural Biology, 2020, 211(1): 107529.
doi: 10.1016/j.jsb.2020.107529
[21] POOLE A J, LYONS R E, CHURCH J S. Dissolving feather keratin using sodium sulfide for bio-polymer applications[J]. Journal of Polymers and the Environment, 2011, 19(4): 995-1004.
doi: 10.1007/s10924-011-0365-6
[22] HEBERLE J. Infrared spectroscopy of proteins[J]. Advances in Polymer Science, 2004, 114(1): 43-121.
[23] WANG D, YANG X H, TANG R C, et al. Extraction of keratin from rabbit hair by a deep eutectic solvent and its characterization[J]. Polymers, 2018, 10(9): 993.
doi: 10.3390/polym10090993
[24] 尹燕霞, 向本琼, 佟丽. 荧光光谱法在蛋白质研究中的应用[J]. 实验技术与管理, 2010, 27(2): 33-40.
YIN Yanxia, XIANG Benqiong, TONG Li. The application of studying fluorescence spectroscopy on protein[J]. Experimental Technology and Management, 2010, 27(2): 33-40.
[25] 张静, 高煊, 金亮, 等. 基于荧光数据计算蛋白质-配体结合常数的方程的对比及应用研究[J]. 光谱学与光谱分析, 2020, 40(11): 180-184.
ZHANG Jing, GAO Xuan, JIN Liang, et al. Comparisons and applications of functional equations for the calculation of the protein-ligand binding constant based on fluorescence spectral data[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 180-184.
[26] WANG X, SHI Z, ZHAO Q, et al. Study on the structure and properties of biofunctional keratin from rabbit hair[J]. Materials, 2021, 14(2): 379.
doi: 10.3390/ma14020379
[1] WANG Ju, ZHANG Liping, WANG Xiaochun, YANG Mengyang. Preparation of highly hydrophobic dyes and their dyeing of ultra-high molecular weight polyethylene fabric [J]. Journal of Textile Research, 2022, 43(04): 97-101.
[2] ZHU Lanfang, BAI Jie, ZHOU Yincheng, HOU Chengwei. Effect of ultrasonic treatment on 4,4'-diaminodiphenylmethane in polyurethane coating of polyester fabric [J]. Journal of Textile Research, 2021, 42(11): 124-128.
[3] LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88.
[4] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53.
[5] WEN Xin, ZHANG Xuzhen, LI Yong, HUANG Wenjian, LU Chen. Study on water-initiated ring-opening polymerization technology of L-lactide [J]. Journal of Textile Research, 2020, 41(12): 21-25.
[6] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[7] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[8] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[9] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[10] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[11] PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14.
[12] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[13] LI Yang, ZHANG Yuanming, JIANG Wei, ZHANG Jianming, WANG Sishe, SU Jianjun, HAN Guangting. Ultrasonic treatment of Modal fiber dyed with madder [J]. Journal of Textile Research, 2019, 40(04): 83-89.
[14] LI Bo, YAO Jinbo, NIU Jiarong, WANG Le, FENG Mao, SUN Yanli. Preparation of wool keratin solution by reducing agent-formic acid process [J]. Journal of Textile Research, 2019, 40(03): 1-7.
[15] . Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!