Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 182-187.doi: 10.13475/j.fzxb.20210805506

• Apparel Engineering • Previous Articles     Next Articles

Distribution characteristics of local skin moisture sensitivity of human in thermal environment

LI Ningning1, ZHANG Zhaohua1,2(), XU Suhong1, ZHENG Ziyi1, LI Xiaoyu1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-08-12 Revised:2022-06-06 Online:2022-09-15 Published:2022-09-26
  • Contact: ZHANG Zhaohua E-mail:zhangzhaohua@dhu.edu.cn

Abstract:

In order to study the distribution characteristics of local skin moisture sensitivity of human under thermal environment and the relationship between objective physical humidity and human subjective moisture feeling, the body fitted one-piece experimental clothes were made of elastic knitted fabric for tests in the artificial climate cabin (the temperature is (30±1) ℃ and the relative humidity is (35±1)%). Six female subjects wore the experimental clothes and walked on the treadmill at the speed of 5 km/h. The objective physiological data and subjective evaluation data of the subjects were recorded during the experiment. The results indicated that the moisture sensitivity of human skin has some local distribution characteristics in the thermal environment. The high sensitivity areas were the upper forehead, chest and lower back, the medium sensitivity areas were upper arm, anterior abdomen, upper back, forearm and buttocks, and the low sensitivity areas were calves and thighs. The experiment confirmed that the skin humidity perception increased with the increase of physical humidity, and there was a positive correlation between humidity perception and physical humidity.

Key words: moisture sensitivity, clothing comfortability, perception of wetness, physical humidity, elastic knitted fabric

CLC Number: 

  • TS941.16

Tab.1

Basic performance parameters of experimental fabrics"

面密度/
(g·m-2)
透气率/
(mm·s-1)
透湿率/
(g·m-2·d-1)
弹性回复率/%
纵向 横向
142 161.61 1 180.67 89.17 92.62

Fig.1

Clothing style. (a) Front; (b) Back"

Fig.2

Body testing parts. (a) Front;(b) Back"

Tab.2

Meaning of local wet sensation scale"

标尺刻度 含义 解释
0 非常干 非常干燥
1 皮肤感觉微干、紧绷
2 几乎不湿 皮肤不紧绷也不湿润
3 微湿 皮肤刚感觉有潮湿感
4 较湿 有潮湿感并出现汗珠
5 很湿 有大量汗珠,但不成股
6 非常湿 有成股汗珠形成,大汗淋漓

Fig.3

Average skin temperature"

Fig.4

Average skin humidity"

Tab.3

Sweat output and sweat evaporation"

受试者编号 总出汗量/kg 汗液蒸发量/kg 汗液蒸发效率/%
1 0.430 0 0.347 0 80.70
2 0.356 0 0.338 0 94.94
3 0.385 0 0.368 0 95.58
4 0.383 0 0.373 0 97.39
5 0.342 0 0.335 0 97.95
6 0.288 0 0.281 0 97.57
平均值 0.364 0±0.047 9 0.340 3±0.032 9 94.02±6.63

Tab.4

Frequency of wet feeling evaluation of local parts of subjects at time line"

身体部位 不同时刻湿感觉频数/次
0 min 5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min 45 min 50 min
上额 0 0 0 3 5 5 5 6 6 6 6
上臂 0 1 1 2 4 4 4 6 6 6 6
小臂 0 0 0 1 2 3 3 4 6 6 6
前胸 1 1 1 4 4 4 6 6 6 6 6
前腹 0 0 0 2 3 3 3 3 3 4 4
大腿 0 0 0 1 2 2 2 3 3 3 3
小腿 0 0 0 0 0 2 3 3 3 4 4
上背 0 0 0 1 3 6 6 6 6 6 6
下背 1 2 2 3 4 5 6 6 6 6 6
臀部 0 0 0 1 1 3 4 4 4 4 5

Fig.5

Percentage of wet feeling evaluation subject in local skin"

Fig.6

Scatter plot of physical wetness and subjective wetness sensation in local skin"

Fig.7

Correlation of physical wetness and subjective wetness sensation in local skin"

[1] GATES R, CLARK R, EDHOLM O G. Man and his thermal environment[J]. Arctic & Alpine Research, 1985, 18(4): 445-446.
[2] DRIVER J, SPENCE C. Multisensory perception: beyond modularity and convergence[J]. Current Biology, 2000, 10(20): 731-735.
doi: 10.1016/S0960-9822(00)00540-6
[3] TIEST W M B, KOSTERS N D, KAPPERS A M, et al. Haptic perception of wetness[J]. Acta Psychologica, 2012, 141(2): 159-163.
doi: 10.1016/j.actpsy.2012.07.014
[4] FILINGERI D, HODDER S, HAVENITH G. The neurophysiology and assessment of human skin wetness perception[C]// PHILIPPE H, FERIAL F, HOWARD M,et al. Agache's Measuring the Skin. Switzerland: Springer Cham, 2020:629-656.
[5] GAGGE A P. A new physiological variable associated with sensible and insensible perspiration[J]. American Journal of Physiology-Legacy Content, 1937, 120(2): 277-287.
doi: 10.1152/ajplegacy.1937.120.2.277
[6] SWEENEY M M, BRANSON D H. Sensorial comfort: part Ⅱ: a magnitude estimation approach for assessing moisture sensation 1[J]. Textile Research Journal, 1990, 60(8): 447-452.
doi: 10.1177/004051759006000803
[7] JEON E, YOO S, KIM E. Psychophysical determination of moisture perception in high-performance shirt fabrics in relation to sweating level[J]. Ergonomics, 2011, 54(6): 576-586.
doi: 10.1080/00140139.2011.582958
[8] FILINGERI D, REDORTIER B, HODDER S, et al. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments[J]. Neuroscience, 2014, 258: 121-130.
doi: 10.1016/j.neuroscience.2013.11.019
[9] FILINGERI D, REDORTIER B, HODDER S, et al. Warm temperature stimulus suppresses the perception of skin wetness during initial contact with a wet surface[J]. Skin Research and Technology, 2015, 21(1): 9-14.
doi: 10.1111/srt.12148
[10] FUKAZAWA T, HAVENITH G. Differences in comfort perception in relation to local and whole body skin wettedness[J]. European Journal of Applied Physiology, 2009, 106(1): 15-24.
doi: 10.1007/s00421-009-0983-z
[11] GERRETT N, REDORTIER B, VOELCKER T, et al. A comparison of galvanic skin conductance and skin wettedness as indicators of thermal discomfort during moderate and high metabolic rates[J]. Journal of Thermal Biology, 2013, 38(8): 530-538.
doi: 10.1016/j.jtherbio.2013.09.003
[12] LEE J, NAKAO K, TOCHIHARA Y. Validity of perceived skin wettedness mapping to evaluate heat strain[J]. European Journal of Applied Physiology, 2011, 111(10): 2581-2591.
doi: 10.1007/s00421-011-1882-7
[13] 程淑, 桂林, 冀航. 主观评分的归一化算法及误差分析[J]. 高等函授学报(自然科学版), 2007, 21(5): 28-30.
CHENG Shu, GUI Lin, JI Hang. Normalization algorithm and error analysis of subjective score[J]. Journal of Higher Correspondence Education (Natural Science Edition), 2007, 21(5):28-30.
[1] MA Liang, LI Jun. Application progress in cold protective clothing based on multiple intelligent technologies [J]. Journal of Textile Research, 2022, 43(06): 206-214.
[2] ZHANG Zhaohua, CHEN Zhirui, LI Luyao, XIAO Ping, PENG Haoran, ZHANG Yuhan. Airflow sensitivity of local human skin and its influencing factors [J]. Journal of Textile Research, 2021, 42(12): 125-130.
[3] WANG Shitan, WANG Xiuhua, WANG Yunyi. Determination and application of air gap parameters in coverall fit analysis [J]. Journal of Textile Research, 2021, 42(09): 137-143.
[4] ZHAO Jingde, DING Yiran, ZHANG Chunhong. Heat transfer modeling and experimental research of ventilation clothing in high-temperature outdoor environment [J]. Journal of Textile Research, 2021, 42(06): 153-159.
[5] ZHANG Zhaohua, TANG Xiangning, LI Jun, LI Luyao. Threshold and intensity evaluation of skin wetness perception under dynamic contact with fabrics [J]. Journal of Textile Research, 2021, 42(02): 93-100.
[6] SUN Cenwenjie, NI Jun, ZHANG Zhaohua, DONG Wanting. Ventilation design and thermal-wet comfort evaluation of knitted sportswear [J]. Journal of Textile Research, 2020, 41(11): 122-127.
[7] ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment [J]. Journal of Textile Research, 2020, 41(08): 88-94.
[8] HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194.
[9] XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114.
[10] JIANG Rongfan, WANG Yunyi. Research progress of stickiness perception of human body in dressing [J]. Journal of Textile Research, 2019, 40(05): 177-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!