Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 22-28.doi: 10.13475/j.fzxb.20211001307

• Fiber Materials • Previous Articles     Next Articles

Bacterial cellulose/polyacrylamide hydrogel polymer electrolyte with dual-crosslinked network based on ionic liquid synergistic method

ZHANG Tianyun1,2(), SHI Xiaohong1, ZHANG Le1, WANG Fujuan1, XIE Yi'na1, YANG Liang1, RAN Fen2   

  1. 1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
    2. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2021-10-08 Revised:2022-01-19 Online:2022-11-15 Published:2022-12-26

Abstract:

In order to achieve balance between different properties of the gel electrolyte, bacterial cellulose/polyacrylamide gel-polymer electrolyte with dual-crosslinked network was prepared by anionic imidazole-type ionic liquid and oxidized-bacterial cellulose, followed by crosslinking by acrylamide using in-situ free radical polymerization method. The anionic ionic liquids were 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4), 1-ethyl-3-methyl-imidazolium hexafluorophosphate (EMIMPF6), and 1-ethyl-3-methyl-imidazolium bistrifluoromethosulfonimide (EMIMTFSI), respectively, which played important synergistic role in the construction of double crosslinked hydrogel polymer electrolyte. The results show that the gel polymer electrolyte based on EMIMBF4 has excellent mechanical properties and ionic conductivity, with its elongation at break being 38.60%, its tensile strength 175.25 kPa, and its ionic conductivity reached 20.16 mS/cm.

Key words: bacterial cellulose, polyacrylamide, ionic liquid, hydrogel electrolyte, dual-crosslinked network, electrochemical energy storage devices

CLC Number: 

  • TS102

Fig.1

FT-IR spectra of different hydrogel. (a) TBC-PAM and TBC-IL-PAM;(b) PAM, TBC, and TBC-PAM"

Fig.2

Stress-strain curves for TBC-PAM and TBC-IL-PAM"

Fig.3

EIS plots of TBC-PAM and TBC-IL-PAM (inset shows enlarged view at high-frequency region)"

Fig.4

Ionic conductivity of TBC/PAM and TBC-IL-PAM"

Tab.1

Comparison of swelling rate and water retention of composite gels%"

试样 吸液率 复吸率
TBC-PAM 274.95 76.67
TBC-B-PAM 324.51 52.46
TBC-P-PAM 308.16 75.70
TBC-T-PAM 262.15 76.95

Fig.5

Drying at 85 ℃ and reabsorption at 25 ℃ for TBC-PAM and TBC-IL-PAM"

Fig.6

Photos of TBC-PAM and TBC-IL-PAM at 85 ℃ for 1 h"

Fig.7

TGA curves of TBC-PAM and TBC-IL-PAM"

Fig.8

Tafel curves of zinc foil in different electrolytes"

Fig.9

Cycle curves of Zn symmetric cell assembled by ordinary glass fiber and TBC-B-PAM gel membrane"

[1] CHEN G, LI Y, BICK M, et al. Smart textiles for electricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720.
doi: 10.1021/acs.chemrev.9b00821 pmid: 32202762
[2] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165.
[3] FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1-31.
[4] 张金明, 张军. 基于纤维素的先进功能材料[J]. 高分子学报, 2010(12): 1376-1398.
ZHANG Jinming, ZHANG Jun. Advanced functional materials based on cellulose[J]. Acta Polymerica Sinica, 2010(12): 1376-1398.
[5] 张晶晶, 容建华, 李文迪, 等. 细菌纤维素/聚丙烯酰胺水凝胶的制备及性能表征[J]. 高分子学报, 2011(6): 602-607.
ZHANG Jingjing, RONG Jianhua, LI Wendi, et al. Preparation and characterization of bacterial cellulose/polyacrylamide hydrogels[J]. Acta Polymerica Sinica, 2011(6): 602-607.
[6] LI Xiaolong, YUAN Libei, LIU Rong, et al. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors[J]. Advanced Energy Materials, 2021, 11(12): 1-11.
[7] ARMAND M, ENDRES F, MACFARLANE D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629.
doi: 10.1038/nmat2448 pmid: 19629083
[8] 于学文, 顾应展, 乔志军, 等. Emim-TFSI基电解液用于超级电容器的高温性能研究[J]. 电源技术, 2020, 353(2): 73-77.
YU Xuewen, GU Yingzhan, QIAO Zhijun, et al. Study on high temperature performance of EMIM-TFSI-based electrolyte used in supercapacitor[J]. Power Supply Technology, 2020, 353(2): 73-77.
[9] KIM S S, JEON J H, KIM H I, et al. High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-Oxidized bacterial cellulose[J]. Advanced Functional Materials, 2015, 25(23): 3560-3570.
doi: 10.1002/adfm.201500673
[10] 张天芸. 基于细菌纤维素纤维的电化学储能材料及器件[D]. 上海: 东华大学, 2018: 22-23.
ZHANG Tianyun. Bacterial cellulose fiber-based electrochemical energy storage materials and devices[D]. Shanghai: Donghua University, 2018: 22-23.
[11] 刘川渟. 纤维素及纤维素衍生物复合电池隔膜的制备与性能研究[D]. 北京: 北京理工大学, 2016: 11-43.
LIU Chuanting. Preparation and properties of cellulose and cellulose derivatives composite cell diaphragm[D]. Beijing: Beijing Institute of Technology, 2016: 11-43.
[12] 梁用智. 基于离子交联的高强度水凝胶的制备[D]. 杭州: 浙江大学, 2019: 1-59.
LIANG Yongzhi. Preparation of high strength hydrogel based on ion crosslinking[D]. Hangzhou: Zhejiang University, 2019: 1-59.
[13] ZHANG XIONGFEI, MA XIAOFENG, HOU TING, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels[J]. Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
doi: 10.1002/anie.201902578
[14] 李琳, 赵帅, 胡红旗. 纤维素溶解体系的研究进展[J]. 纤维素科学与技术, 2009(2): 72-78.
LI Lin, ZHAO Shuai, HU Hongqi. Research progress of cellulose dissolution system[J]. Cellulose Science and Technology, 2009(2): 72-78.
[15] MCEWEN A B, HELEN L N, LECOMPTE K, et al. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applica-tions[J]. Journal of the Electrochemical Society, 1999, 146(5): 1687-1695.
doi: 10.1149/1.1391827
[16] 卢芸, 孙庆丰, 于海鹏, 等. 离子液体中的纤维素溶解、再生及材料制备研究进展[J]. 有机化学, 2010, 30(10): 1593-1602.
LU Yun, SUN Qingfeng, YU Haipeng, et al. Research progress on dissolution, regeneration and preparation of cellulose in ionic liquids[J]. Chinese Journal of Organic Chemistry, 2010, 30(10): 1593-1602.
[17] 章正熙, 高旭辉, 杨立. $BF_{4}^{-}$和TFSI-系列室温离子液体绿色电解液的电化学性能[J]. 科学通报, 2005(15): 1584-1588.
ZHANG Zhengxi, GAO Xuhui, YANG Li. Electrochemical properties of $BF_{4}^{-}$ and TFSI- series ionic liquid green electrolytes at room temperature[J]. Chinese Science Bulletin, 2005(15): 1584-1588.
[18] 慕竣屹, 金振兴, 蔡克迪. 六氟磷酸电解液在超级电容器中的电化学性能研究[J]. 渤海大学学报(自然科学版), 2011, 32(1): 42-46.
MU Junyi, JIN Zhenxing, CAI Kedi. Electrochemical properties of hexafluorophosphoric acid electrolyte in supercapacitors[J]. Journal of Bohai University (Natural Science Edition), 2011, 32(1): 42-46.
[1] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
[2] LIANG Jiaojiao, WANG Jingjing, XIA Yumin, ZHU Xinyuan, YAN Bing, SUN Liming, WANG Yanping, HE Yong, WANG Yimin. Preparation and properties of normal pressure-anionic dyeable polypropylene fiber based on polyionic liquid [J]. Journal of Textile Research, 2022, 43(07): 17-21.
[3] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[4] YUAN Jiugang, JI Ji, XUE Qi, JIANG Zhe, FAN Xuerong, GAO Weidong. Dissolution and regeneration of wool keratin in choline thioglycolate [J]. Journal of Textile Research, 2021, 42(01): 35-39.
[5] OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, ZHANG Jiayu. Properties of regenerated fibers from bamboo pulp/ionic liquid combined system [J]. Journal of Textile Research, 2020, 41(01): 21-25.
[6] . Preparation and characterization of silk fibroin /polyvinyl alcohol composite membrane [J]. Journal of Textile Research, 2018, 39(11): 14-19.
[7] . Preparationof porphyrin grafted bacterial cellulose and photodynamic antimicrobial property thereof [J]. Journal of Textile Research, 2018, 39(11): 20-26.
[8] . preparation of 2-(dimethylamino) ethyl methacrylate grafted by bacterial cellulose aerogels [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 1-6.
[9] . Preparation and properties of self-weaving composites of bacterial cellulose/polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 126-131.
[10] . Alkali deweighing of polyester fabrics using alkyl imidazolium Gemini ionic liquid [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 79-83.
[11] . Preparation and characterization of drug-loading regenerated bacterial cellulose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 14-18.
[12] . Solubility and spectral characteristic of feather and down in different dissolution systems [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 27-31.
[13] . Influence of asymmetry imidazolium-based ionic liquids on retarding dyeing performance of acrylic fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 68-72.
[14] . Preparation and characterization of plasticizing melting system consisting of cellulose diacetate and plasticizers [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 6-11.
[15] . Preparation and characterization of lauric acid cellulose ester and its film properties [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .