Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 8-16.doi: 10.13475/j.fzxb.20211200109

• Invited Column: Biomedical Textiles • Previous Articles     Next Articles

Progress in biomass fiber medical dressings

WU Yang1,2, LIU Fangtian1,2, CAO Mengjie3, CUI Jinhai3, DENG Hongbing1,2()   

  1. 1. School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
    2. Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, China
    3. Allmed Medical Products Co., Ltd., Yichang, Hubei 443200, China
  • Received:2021-12-01 Revised:2022-01-10 Online:2022-03-15 Published:2022-03-29
  • Contact: DENG Hongbing E-mail:hbdeng@whu.edu.cn

Abstract:

In view of the problems of easy infection and secondary injury of current traditional medical dressings in wound care, this paper reviews the good hygroscopicity, bacteriostasis and certain biological activity of some biomass fibers, the advantages of biomass fibers as medical dressings are introduced, considering the natural biodegradability, biocompatibility and non-toxicity of biomass raw materials. By briefly summarizing the preparation methods of different biomass fibers for medical dressings, the suitable biomass fibers for the customized treatment of different wounds are proposed. The research progress of various biomass fiber medical dressings achieved in recent years are reviewed, including their functional applications in antibacterial and anti-inflammatory, drug delivery, exudate management, and tissue replacement medical dressings. The existing problems and future development directions of biomass fiber medical dressings are discussed.

Key words: medical textiles, medical dressing, biomass fiber, antibacterial and anti-inflammatory, drug delivery, exudate management, tissue replacement

CLC Number: 

  • O636

Fig.1

Preparation and application of biomass fiber medical dressings"

[1] GASPAR-PINTILIESCU A, STANCIUC A M, CRACIUNESCU O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review[J]. International Journal of Biological Macromolecules, 2019,138:854-865.
doi: 10.1016/j.ijbiomac.2019.07.155
[2] NUSSBAUM S R, CARTER M J, FIFE C E, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J]. Value in Health, 2018,21(1):27-32.
doi: 10.1016/j.jval.2017.07.007
[3] PILEHVAR-SOLTANAHMADI Y, AKBARZADEH A, MOAZZEZ-LALAKLO N, et al. An update on clinical applications of electrospun nanofibers for skin bioengineering[J]. Artificial Cells Nanomedicine and Biotechnology, 2016,44(6):1350-1364.
doi: 10.3109/21691401.2015.1036999
[4] WU X B, LIU R, LAO T T. Therapeutic compression materials and wound dressings for chronic venous insufficiency: a comprehensive review[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020,108(3):892-909.
doi: 10.1002/jbm.b.v108.3
[5] DONG R N, GUO B L. Smart wound dressings for wound healing[J]. Nano Today, 2021,41. DOI: 10.1016/j.nantod.2021.101290.
doi: 10.1016/j.nantod.2021.101290
[6] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004
[7] AMBEKAR R S, KANDASUBRAMANIAN B. Advancements in nanofibers for wound dressing: a review[J]. European Polymer Journal, 2019,117:304-336.
doi: 10.1016/j.eurpolymj.2019.05.020
[8] RIEGER K A, BIRCH N P, SCHIFFMAN J D. Designing electrospun nanofiber mats to promote wound healing: a review[J]. Journal of Materials Chemistry B, 2013,1(36):4531-4541.
doi: 10.1039/c3tb20795a
[9] HOMAEIGOHAR S, BOCCACCINI A R. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomaterialia, 2020,107:25-49.
doi: 10.1016/j.actbio.2020.02.022
[10] CHATTOPADHYAY S, RAINES R T. Collagen-based biomaterials for wound healing[J]. Biopolymers, 2014,101(8):821-833.
doi: 10.1002/bip.v101.8
[11] JAYAKUMAR R, PRABAHARAN M, KUMAR P T S, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnology Advances, 2011,29(3):322-337.
doi: 10.1016/j.biotechadv.2011.01.005
[12] PATIL P P, REAGAN M R, BOHARA R A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings[J]. International Journal of Biological Macromolecules, 2020,164:4613-4627.
doi: 10.1016/j.ijbiomac.2020.08.041
[13] ZHANG M, ZHAO X. Alginate hydrogel dressings for advanced wound management[J]. International Journal of Biological Macromolecules, 2020,162:1414-1428.
doi: 10.1016/j.ijbiomac.2020.07.311
[14] NASERI-NOSAR M, ZIORA Z M. Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites[J]. Carbohydrate Polymers, 2018,189:379-398.
doi: 10.1016/j.carbpol.2018.02.003
[15] JANMOHAMMADI M, NOURBAKHSH M S. Electrospun polycaprolactone scaffolds for tissue engineering: a review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019,68(9):527-539.
doi: 10.1080/00914037.2018.1466139
[16] AUGUSTINE R, REHMAN S R U, AHMED R, et al. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing[J]. International Journal of Biological Macromolecules, 2020,156:153-170.
doi: 10.1016/j.ijbiomac.2020.03.207
[17] 芦长椿. 高端创伤敷料技术与市场的最新进展[J]. 纺织导报, 2014(1):83-87.
LU Changchun. Latest development of advanced wound dressing: market and technology[J]. China Textile Leader, 2014(1):83-87.
[18] RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006,31(7):603-632.
doi: 10.1016/j.progpolymsci.2006.06.001
[19] QU L J, GUO X Q, TIAN M W, et al. Antimicrobial fibers based on chitosan and polyvinyl-alcohol[J]. Fibers and Polymers, 2014,15(7):1357-1363.
doi: 10.1007/s12221-014-1357-7
[20] SHAMSHINA J L, GURAU G, BLOCK L E, et al. Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution[J]. Journal of Materials Chemistry B, 2014,2(25):3924-3936.
doi: 10.1039/C4TB00329B
[21] SHEN X Y, JI Y L, TAN Z Q, et al. Preparing technology and application of biomedical fibers based on chitin and its derivatives[J]. Materials Review, 2008,22(6):1-5.
[22] HUANG Y, ZHONG Z B, DUAN B, et al. Novel fibers fabricated directly from chitin solution and their application as wound dressing[J]. Journal of Materials Chemistry B, 2014,2(22):3427-3432.
doi: 10.1039/c4tb00098f
[23] KHOR E, LIM L Y. Implantable applications of chitin and chitosan[J]. Biomaterials, 2003,24(13):2339-2349.
doi: 10.1016/S0142-9612(03)00026-7
[24] TCHEMTCHOUA V T, ATANASOVA G, AQIL A, et al. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration[J]. Biomacromolecules, 2011,12(9):3194-3204.
doi: 10.1021/bm200680q
[25] DING F Y, DENG H B, DU Y M, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications[J]. Nanoscale, 2014,6(16):9477-9493.
doi: 10.1039/C4NR02814G
[26] WANG S Y, YAN F, REN P, et al. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application[J]. International Journal of Biological Macromolecules, 2020,158:9-17.
doi: 10.1016/j.ijbiomac.2020.04.116
[27] MOMIN M, MISHRA V, GHARAT S, et al. Recent advancements in cellulose-based biomaterials for management of infected wounds[J]. Expert Opinion on Drug Delivery, 2021,18(11):1741-1760.
doi: 10.1080/17425247.2021.1989407
[28] HAKKARAINEN T, KOIVUNIEMI R, KOSONEN M, et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment[J]. Journal of Controlled Release, 2016,244:292-301.
doi: 10.1016/j.jconrel.2016.07.053
[29] PASARIBU K M, GEA S, ILYAS S, et al. Fabrication and in-vivo study of micro-colloidal zanthoxylum acanthopodium-loaded bacterial cellulose as a burn wound dressing[J]. Polymers, 2020,12(7) : 1436. DOI: 10.3390/polym12071436.
doi: 10.3390/polym12071436
[30] ABAZARI M F, GHOLIZADEH S, KARIZI S Z, et al. Recent advances in cellulose-based structures as the wound-healing biomaterials: a clinically oriented review[J]. Applied Sciences, 2021,11(17):7769-7769.
doi: 10.3390/app11177769
[31] TEIXEIRA M A, PAIVA M C, AMORIM M T P, et al. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing[J]. Nanomaterials, 2020,10(3). DOI: 10.3390/nano10030557.
doi: 10.3390/nano10030557
[32] VATANKHAH E, PRABHAKARAN M P, JIN G R, et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for wound treatment applications[J]. Journal of Biomaterials Applications, 2014,28(6):909-921.
doi: 10.1177/0885328213486527
[33] HUANG R, LI W Z, LV X X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing[J]. Biomaterials, 2015,53:58-75.
doi: 10.1016/j.biomaterials.2015.02.076
[34] 白爽, 侯登勇, 沈先荣, 等. 新型静电纺丝伤口敷料的止血性能及促愈合作用研究[J]. 中国海洋药物, 2019,38(2):1-10.
BAI Shuang, HOU Dengyong, SHEN Xianrong, et al. Study on hemostatic property and wound healing effects of new electrostatic spinning wound dressing[J]. Chinese Journal of Marine Drugs, 2019,38(2):1-10.
[35] BOHN G, LIDEN B, SCHULTZ G, et al. Ovine-based collagen matrix dressing: next-generation collagen dressing for wound care[J]. Advances in Wound Care, 2016,5(1):1-10.
doi: 10.1089/wound.2015.0660
[36] 李晓龙, 陈婷, 张兴群. Ⅰ型胶原蛋白纳米纤维膜的制备及结构表征[J]. 食品与药品, 2016,18(2):83-86.
LI Xiaolong, CHEN Ting, ZHANG Xingqun. Preparation and structure characterization of type Ⅰcollagen nanofiber membrane[J]. Food and Drug, 2016,18(2):83-86.
[37] LIU S J, KAU Y C, CHOU C Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing[J]. Journal of Membrane Science, 2010,355(1/2):53-59.
doi: 10.1016/j.memsci.2010.03.012
[38] 余丕军, 王露萍, 郭妤, 等. 蛋白质-多糖复合纳米纤维膜用于皮肤缺损修复实验研究[J]. 中国医学工程, 2010,18(4):1-4,9.
YU Pijun, WANG Luping, GUO Yu, et al. Experimental research on repair of skin loss with protein-glycans compound nanofiber membrane[J]. China Medical Engineering, 2010,18(4):1-4,9.
[39] CHENG W L, ZHANG Z Y, XU R D, et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2018,106(7):2588-2595.
doi: 10.1002/jbm.b.34075
[40] CHEIRMADURAI K, THANIKAIVELAN P, MURALI R. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2016,137:584-593.
doi: 10.1016/j.carbpol.2015.11.015
[41] 姜波, 蒋玉东, 关瑛, 等. 丝素蛋白材料在皮肤创伤愈合中的研究进展[J]. 现代生物医学进展, 2019,19(6):1197-1200.
JIANG Bo, JIANG Yudong, GUAN Ying, et al. Research progress of silk fibroin biomaterials in skin healing[J]. Progress in Modern Biomedicine, 2019,19(6):1197-1200.
[42] 高保东, 张岩, 唐文超, 等. 丝素基伤口敷料研究进展[J]. 纺织学报, 2016,37(7):162-168.
GAO Baodong, ZHANG Yan, TANG Wenchao, et al. Research progress of wound dressing based on silk fibroin[J]. Journal of Textile Research, 2016,37(7):162-168.
[43] 吴建兵, 夏娟. 创伤修复用丝素蛋白敷料的研究进展[J]. 丝绸, 2020,57(10):29-33.
WU Jianbing, XIA Juan. Research progress of silk fibroin dressings for wound healing[J]. Journal of Silk, 2020,57(10):29-33.
[44] CHOMACHAYI M D, SOLOUK A, MIRZADEH H. Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer[J]. Progress in Biomaterials, 2016,5(1):71-80.
doi: 10.1007/s40204-016-0046-6
[45] MA X, WU G M, DAI F F, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications[J]. Carbohydrate Polymers, 2021,251. DOI: 10.1016/j.carbpol.2020.117058.
doi: 10.1016/j.carbpol.2020.117058
[46] ZHANG Q, WANG N, HU R Q, et al. Wet spinning of bletilla striata polysaccharide/silk fibroin hybrid fibers[J]. Materials Letters, 2015,161:576-579.
doi: 10.1016/j.matlet.2015.09.031
[47] 秦益民. 海藻酸医用敷料吸湿机理分析[J]. 纺织学报, 2005,26(1):113-115.
QIN Yimin. Absorption mechanism analysis about alginate wound dressings[J]. Journal of Textile Research, 2005,26(1):113-115.
[48] 王锐, 莫小慧, 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014,35(2):145-152.
WANG Rui, MO Xiaohui, WANG Xiaodong. Current status and development trend of application of alginate fiber[J]. Journal of Textile Research, 2014,35(2):145-152.
[49] 王建坤, 邓浩, 霍旭蒙, 等. 海藻酸钙纤维及其混纺针织纱的开发[J]. 天津工业大学学报, 2016,35(1):22-27.
WANG Jiankun, DENG Hao, HUO Xumeng, et al. Development of calcium alginate fibers and its blended knitting yarn[J]. Journal of Tiangong University, 2016,35(1):22-27.
[50] 房乾, 王荣武, 吴海波. 海藻纤维针刺复合医用敷料吸湿透气性能的研究[J]. 产业用纺织品, 2015,33(2):24-28.
FANG Qian, WANG Rongwu, WU Haibo. Research on the moisture adsorption and air permeability of alginate needle-punched composite wound dressing[J]. Technical Textiles, 2015,33(2):24-28.
[51] HE Y, ZHANG N, GONG Q, et al. Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning[J]. Carbohydrate Polymers, 2012,88(3):1100-1108.
doi: 10.1016/j.carbpol.2012.01.071
[52] BI H Y, FENG T Y, LI B B, et al. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing[J]. Polymers, 2020,12(4). DOI: 10.3390/polym12040839.
doi: 10.3390/polym12040839
[53] 王燕, 陈华. 海洋源多糖和蛋白类医用材料研究与应用进展[J]. 现代化工, 2018,38(6):33-37,39.
WANG Yan, CHEN Hua. Research and application progress in marine polysaccharide and protein biomedical materials[J]. Modern Chemical Industry, 2018,38(6):33-37,39.
[54] UPPAL R, RAMASWAMY G N, ARNOLD C, et al. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011,97B(1):20-29.
doi: 10.1002/jbm.b.31776
[55] SEON-LUTZ M, COUFFIN A-C, VIGNOUD S, et al. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release[J]. Carbohydrate Polymers, 2019,207:276-287.
doi: 10.1016/j.carbpol.2018.11.085
[56] SNETKOV P, MOROZKINA S, OLEKHNOVICH R, et al. Curcumin/usnic acid-loaded electrospun nanofibers based on hyaluronic acid[J]. Materials, 2020,13(16). DOI: 10.3390/ma13163476.
doi: 10.3390/ma13163476
[57] FAHMY H M, ALY A A, ABOU-OKEIL A. A non-woven fabric wound dressing containing layer-by-layer deposited hyaluronic acid and chitosan[J]. International Journal of Biological Macromolecules, 2018,114:929-934.
doi: 10.1016/j.ijbiomac.2018.03.149
[58] MOVAFFAGH J, FAZLY-BAZZAZ B S, YAZDI A T, et al. Wound healing and antimicrobial effects of chitosan-hydrogel/honey compounds in a rat full-thickness wound model[J]. Wounds-A Compendium of Clinical Research and Practice, 2019,31(9):228-235.
[59] DAI T H, TANAKA M, HUANG Y Y, et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects[J]. Expert Review of Anti-Infective Therapy, 2011,9(7):857-879.
doi: 10.1586/eri.11.59
[60] MATTIOLI-BELMONTE M, ZIZZI A, LUCARINI G, et al. Chitin nanofibrils linked to chitosan glycolate as spray, gel, and gauze preparations for wound repair[J]. Journal of Bioactive and Compatible Polymers, 2007,22(5):525-538.
doi: 10.1177/0883911507082157
[61] ABDEL-MOHSEN A M, JANCAR J, MASSOUD D, et al. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties[J]. International Journal of Pharmaceutics, 2016,510(1):86-99.
doi: 10.1016/j.ijpharm.2016.06.003
[62] IGNATOVA M, MANOLOVA N, RASHKOV I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning[J]. European Polymer Journal, 2007,43(4):1112-1122.
doi: 10.1016/j.eurpolymj.2007.01.012
[63] CAI N, LI C, HAN C, et al. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application[J]. Applied Surface Science, 2016,369:492-500.
doi: 10.1016/j.apsusc.2016.02.053
[64] 桑彩霞, 王建坤. 海藻纤维医用敷料及其抗菌改性研究[J]. 针织工业, 2021(7):51-56.
SANG Caixia, WANG Jiankun. Alginate fiber based medical dressing and its antibacterial modification[J]. Knitting Industries, 2021(7):51-56.
[65] 王海楼, 肖瑶, 王道, 等. 载银海藻酸钙纤维水刺非织造布的制备及其抗菌性能[J]. 产业用纺织品, 2019,37(12):7-11.
WANG Hailou, XIAO Yao, WANG Dao, et al. Preparation of silver loaded calcium alginate fiber spunlaced nonwovens and their antibacterial performance[J]. Technical Textiles, 2019,37(12):7-11.
[66] MIRAFTAB M, MASOOD R, EDWARD-JONES V. A new carbohydrate-based wound dressing fibre with superior absorption and antimicrobial potency[J]. Carbohydrate Polymers, 2014,101:1184-1190.
doi: 10.1016/j.carbpol.2013.10.058
[67] SAGHAZADEH S, RINOLDI C, SCHOT M, et al. Drug delivery systems and materials for wound healing applications[J]. Advanced Drug Delivery Reviews, 2018,127:138-166.
doi: 10.1016/j.addr.2018.04.008
[68] BHISE N S, SHMUELI R B, SUNSHINE J C, et al. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis[J]. Expert Opinion on Drug Delivery, 2011,8(4):485-504.
doi: 10.1517/17425247.2011.558082
[69] SCHNEIDER A, WANG X Y, KAPLAN D L, et al. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound heating[J]. Acta Biomaterialia, 2009,5(7):2570-2578.
doi: 10.1016/j.actbio.2008.12.013
[70] MIGUEL S P, SIMOES D, MOREIRA A F, et al. Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications[J]. International Journal of Biological Macromolecules, 2019,121:524-535.
doi: 10.1016/j.ijbiomac.2018.10.041
[71] SEON-LUTZ M, COUFFIN A C, VIGNOUD S, et al. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release[J]. Carbohydrate Polymers, 2019,207:276-287.
doi: 10.1016/j.carbpol.2018.11.085
[72] LI T T, ZHONG Y Q, PENG H K, et al. Multiscale composite nanofiber membranes with asymmetric wetability: preparation, characterization, and applications in wound dressings[J]. Journal of Materials Science, 2021,56(6):4407-4419.
doi: 10.1007/s10853-020-05531-4
[73] ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254.
doi: 10.1016/j.ijbiomac.2018.10.115
[74] 秦益民. 制作医用敷料的羧甲基纤维素纤维[J]. 纺织学报, 2006,27(7):97-99.
QIN Yimin. Carboxymethyl cellulose fibers used for wound dressings[J]. Journal of Textile Research, 2006,27(7):97-99.
[75] ZHONG S P, ZHANG Y Z, LIM C T. Tissue scaffolds for skin wound healing and dermal reconstruction[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2010,2(5):510-525.
doi: 10.1002/wnan.v2:5
[76] MANSBRIDGE J N. Tissue-engineered skin substitutes in regenerative medicine[J]. Current Opinion in Biotechnology, 2009,20(5):563-567.
doi: 10.1016/j.copbio.2009.08.008
[77] LYNCH C R, KONDIAH P P D, CHOONARA Y E. Advanced strategies for tissue engineering in regenerative medicine: a biofabrication and biopolymer perspective[J]. Molecules, 2021,26(9).DOI: 10.3390/molecules26092518.
doi: 10.3390/molecules26092518
[78] AMBHORKAR P, RAKIN R H, WANG Z J, et al. Biofabrication strategies for engineering heterogeneous artificial tissues[J]. Additive Manufacturing, 2020,36. DOI: 10.1016/j.addma.2020.101459.
doi: 10.1016/j.addma.2020.101459
[79] SUNDARAMURTHI D, KRISHNAN U M, SETHURAMAN S. Electrospun nanofibers as scaffolds for skin tissue engineering[J]. Polymer Reviews, 2014,54(2):348-376.
doi: 10.1080/15583724.2014.881374
[80] MELE E. Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings[J]. Journal of Materials Chemistry B, 2016,4(28):4801-4812.
doi: 10.1039/C6TB00804F
[81] DEL BAKHSHAYESH A R, MOSTAFAVI E, ALIZADEH E, et al. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering[J]. Acs Omega, 2018,3(8):8605-8611.
doi: 10.1021/acsomega.8b01219
[82] NOH H K, LEE S W, KIM J M, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts[J]. Biomaterials, 2006,27(21):3934-3944.
doi: 10.1016/j.biomaterials.2006.03.016
[83] ZHOU Y S, YANG D Z, CHEN X M, et al. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration[J]. Biomacromolecules, 2008,9(1):349-354.
doi: 10.1021/bm7009015
[84] SUNDARAMURTHI D, VASANTHAN K S, KUPPAN P, et al. Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute[J]. Biomedical Materials, 2012,7(4). DOI: 10.1088/1748-6041/7/4/045005.
doi: 10.1088/1748-6041/7/4/045005
[85] DHANDAYUTHAPANI B, KRISHNAN U M, SETHURAMAN S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2010,94b(1):264-272.
[86] SINGH P, MAPARU A K, SHAH S, et al. Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation[J]. Materials Science & Engineering C-Materials for Biological Applications, 2020. DOI: 10.1016/j.msec.2020.111580.
doi: 10.1016/j.msec.2020.111580
[1] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[2] LI Tianhua, LI Jingjing, ZHANG Keqin, ZHAO Huijing, MENG Kai. Numerical simulation of hemodynamics in spiral artificial blood vessel [J]. Journal of Textile Research, 2022, 43(03): 17-23.
[3] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[4] LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76.
[5] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[6] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[7] WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22.
[8] CHEN Junyan, JU Jingge, DENG Nanping, YANG Qi, CHENG Bowen, KANG Weimin. Application of rabbit hair based hollow carbon fiber in lithium-sulfur battery [J]. Journal of Textile Research, 2021, 42(03): 56-63.
[9] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[10] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[11] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[12] HAN Jiarui, HUANG Zhenzhen, WANG Jiajun, YIN Hao, GAO Jing, LAO Jihong, WANG Lu. Preparation and cytotoxicity analysis of flexible metal electrodes for medical dressings [J]. Journal of Textile Research, 2020, 41(09): 174-182.
[13] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[14] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[15] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!