Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20211109707

• Invited Column: Biomedical Textiles •     Next Articles

Research progress in warp-knitted meshes for tackling complications after hernia repair

QIAO Yansha1,2, MAO Ying1,2, XU Danyao1,2, LI Yan1,2, LI Shaojie3, WANG Lu1,2(), TANG Jianxiong3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Hernia and Abdominal Wall Surgery Center, Department of General Surgery, Huadong Hospital of Fudan University, Shanghai 200040, China
  • Received:2021-11-24 Revised:2022-01-06 Online:2022-03-15 Published:2022-03-29
  • Contact: WANG Lu E-mail:wanglu@dhu.edu.cn

Abstract:

In view of the multiple complications caused by synthetic meshes implanted for hernia repair, a literature review was carried out and it revealed that the triggering factors of complications are the pollution from the pathogenic bacteria and the foreign body reaction from the mesh. Regarding the commonly used warp-knitted mesh, the present treatments were divided into the warp-knitted structure adjustment and the surface modification. According to the different scenarios (bacterial or aseptic inflammation) and occasions (intraperitoneal or extraperitoneal), the surface modifications were classified and explained. The progress in related researches and clinical commercial meshes in recent years were scrutinized, and summarized three types of modified meshes (anti-bacterial, anti-adhesion, anti-inflammation) were summarised. By outlining the corresponding mechanisms and effects on complications, this paper pointed out the current problems of these types of modified meshes and concluded that the high-value warp-knitted mesh is the future development direction.

Key words: hernia mesh, medical textiles, warp-knitted mesh, hernia repair, complications, structure adjustment, surface modification

CLC Number: 

  • TS159

Tab.1

Studies of anti-microbial warp-knitted meshes"

抗菌剂 负载方法 抗菌效果 参考文献
左氧氟沙星 在PP补片表面构建不同分子质量壳聚糖交联网络,药物同时被笼络进去 中等分子质量的壳聚糖-药物涂层的体外抗SA能力可持续6 d [23]
聚多巴胺黏附 体外抗SA能力持续6 d [24]
在PP补片上接枝的具有疏水腔结构的环糊精装载 体外抗SA能力持续10 d [25]
利福平 热敏型水凝胶负载 体外抗菌活性可持续5 d,在体内阻止感染并促进了良性的组织整合 [26]
经聚(丙交酯-co-乙交酯)(PLGA)微球装载后再通过PLGA涂层热固化在补片表面 体外抗SA能力长达30 d [27]
庆大霉素+利福平 热敏型水凝胶负载 体外抗SA能力持续5 d,抗SE能力至少可达7 d [28]
利福平或氯己定 经PLGA纳米颗粒负载后再通过壳聚糖涂层固定在补片表面 体外对SA和SE均有高度抗杀能力;负载氯己定能持续7 d,负载利福平能持续14 d [29]
羧甲基纤维素水凝胶负载 在SA感染模型中控制了感染并促进了组织修复 [30]
三氯生 在PP补片上接枝的具有疏水腔结构的环糊精装载 体外抗SA能力达11 d [31]
氯己定 羧甲基纤维素水凝胶负载 体外抗SA能力至少3 d,在体内阻止了感染 [32]
合成可降解聚合物负载 体外抗SA能力达7 d [33]
纳米银 射频溅射法 体外抗SA且不影响间皮细胞生长 [34]
以碳酸钙为载体通过电喷法沉积 体内控制了耐甲氧西林金黄色葡萄球菌引发的感染 [35]
纳米金刚石 以壳聚糖表面涂层为载体 体外抗大肠杆菌,无细胞毒性 [36]
纳米金 等离子体活化接枝 抗生物膜形成 [37]
阳离子抗菌肽 和聚己内酯共混后静电纺丝 体外抗大肠杆菌但不抗SA,无细胞毒性 [38]

Tab.2

Studies of anti-adhesion warp-knitted meshes"

防粘连材料 构建方法 防粘连效果 参考文献
聚乙烯醇 在等离子体活化的PP表面化学接枝 植入兔腹腔3个月后,仅有边缘粘连,约占补片面积的20%,且容易将组织剥离 [41]
聚多巴胺 氧化沉积 植入大鼠腹腔后的第10天和第60天,Katada黏附评分和商用防粘连补片(Parietex)相当 [42]
氧化羧甲基纤维素-g-多巴胺和羧甲基壳聚糖 2种成分的溶液共混后在补片表面原位形成水凝胶 植入猪腹腔1 a后,涂层补片的粘连面积和强度均显著低于PP [44]
丝素蛋白 丝素蛋白与丙烯酰胺在自由基诱导下形成互穿网络 植入兔腹腔内1个月,粘连评分显著低于PP [45]
聚(乳酸-co-乙醇酸)和壳聚糖 静电纺膜 植入大鼠腹腔7 d后,涂层补片的粘连评分均低于PP [46]
聚己内酯和氧化再生纤维素颗粒 静电纺膜 植入大鼠腹腔7 d后,氧化再生纤维素使涂层补片的粘连评分显著低于PP [47]
丝素蛋白 静电纺膜 植入大鼠腹腔内6周时,无粘连;12周时粘连面积显著低于PP,且黏附力也很低 [48]

Tab.3

Studies of anti-inflammatory warp-knitted meshes"

抗炎材料 修饰方法 抗炎效果 参考文献
间充质干细胞 用明胶或聚赖氨酸涂覆补片后接种细胞 在体内外均能诱导巨噬细胞向M2极化 [49]
间充质干细胞和外泌体 用固定补片的纤维蛋白胶负载 营造抗炎微环境,促进组织重塑 [50]
脂肪干细胞 细胞接种 降低了大鼠全身炎症反应 [51]
壳聚糖和明胶 补片在共混溶液中浸没后加入交联剂整体复合成形 下调促炎因子和上调抗炎因子,但基质沉积量增加 [52]
胶原蛋白 补片在共混溶液中浸没后整体固化成形 上调促炎因子表达,引发了更强的炎症 [53]
胶原蛋白和磷酸盐 补片在共混溶液中浸涂后交联成形 降低了局部炎症和促进了组织整合 [54]
硫酸软骨素和明胶 补片在共混溶液中浸涂后交联定形 降低了局部炎症和纤维化 [55]
磷酰胆碱基聚合物 表面金属酚醛网络接枝 降低了局部炎症和纤维化 [56]
甲基丙烯酸 溶液喷涂 降低了炎症和促进了血管化 [57]
S-亚硝基谷胱甘肽 聚乙烯醇涂层负载 炎症程度减弱,血管生成增加 [58]
类固醇 植入前浸渍在药物溶液中 炎症程度降低 [59]
维生素E 溶液浸渍 炎性反应减弱,纤维化程度较低 [60]
白细胞介素4 层层自组装 形成抗炎微环境,降低了纤维化,改善了组织整合 [61]
[1] JENKINS J T, O'DWYER P J. Inguinal hernias[J]. The British Medical Journal, 2008,336(7638):269-272.
doi: 10.1136/bmj.39450.428275.AD
[2] KINGSNORTH A, LEBLANC K. Hernias: inguinal and incisional[J]. Lancet, 2003,362(9395):1561-1571.
doi: 10.1016/S0140-6736(03)14746-0
[3] KALABA S, GERHARD E, WINDER J S, et al. Design strategies and applications of biomaterials and devices for hernia repair[J]. Bioactive Materials, 2016,1(1):2-17.
doi: 10.1016/j.bioactmat.2016.05.002
[4] BROWN C N, FINCH J G. Which mesh for hernia repair?[J]. Annals of the Royal College of Surgeons of England, 2010,92(4):272-278.
doi: 10.1308/003588410X12664192076296
[5] WISE J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds[J]. The British Medical Journal, 2018,362:k4104. DOI: 10.1136/bmj.k4104.
doi: 10.1136/bmj.k4104
[6] FALAGAS M E, KASIAKOU S K. Mesh-related infections after hernia repair surgery[J]. Clinical Microbiology and Infection, 2005,11(1):3-8.
[7] GUILLAUME O, PEREZ-TANOIRA R, FORTELNY R, et al. Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution?[J]. Biomaterials, 2018,167:15-31.
doi: 10.1016/j.biomaterials.2018.03.017
[8] CHANDORKAR Y, RAVIKUMAR K, BASU B. The foreign body response demystified[J]. ACS Biomaterials Science & Engineering, 2018,5(1):19-44.
[9] ANDERSON J M, RODRIGUEZ A, CHANG D T. Foreign body reaction to biomaterials[J]. Seminars in Immunology, 2008,20(2):86-100.
doi: 10.1016/j.smim.2007.11.004
[10] ZHU L M. Mesh implants: an overview of crucial mesh parameters[J]. World Journal of Gastrointestinal Surgery, 2015,7(10):226-236.
doi: 10.4240/wjgs.v7.i10.226
[11] SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018,48(1):333-360.
doi: 10.1177/1528083717690613
[12] PAPADIMITRIOU J, PETROS P. Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils[J]. Hernia, 2005,9(1):75-78.
doi: 10.1007/s10029-004-0286-6
[13] ENGELSMAN A F, VAN H C, BUSSCHER H J, et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization[J]. British Journal of Surgery, 2008,95(8):1051-1059.
doi: 10.1002/bjs.6154
[14] KLINGE U, JUNGE K, SPELLERBERG B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model[J]. Journal of Biomedical Materials Research, 2002,63(6):765-771.
doi: 10.1002/(ISSN)1097-4636
[15] DIAZ-GODOY A, GARCIA-URENA M A, LOPEZ-MONCLUS J, et al. Searching for the best polypropylene mesh to be used in bowel contamination[J]. Hernia, 2011,15(2):173-179.
doi: 10.1007/s10029-010-0762-0
[16] ZOGBI L, TRINDADE E N, TRINDADE M R. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013,17(6):765-772.
doi: 10.1007/s10029-013-1046-2
[17] RUTEGARD M, GUMUSCU R, STYLIANIDIS G, et al. Chronic pain, discomfort, quality of life and impact on sex life after open inguinal hernia mesh repair: an expertise-based randomized clinical trial comparing lightweight and heavyweight mesh[J]. Hernia, 2018,22(3):411-418.
doi: 10.1007/s10029-018-1734-z
[18] CARRO J L P, RIU S V, LOJO B R, et al. Randomized clinical trial comparing low density versus high density meshes in patients with bilateral inguinal hernia[J]. American Surgeon, 2017,83(12):1352-1356.
doi: 10.1177/000313481708301217
[19] BONA S, ROSATI R, OPOCHER E, et al. Pain and quality of life after inguinal hernia surgery: a multicenter randomized controlled trial comparing lightweight vs heavyweight mesh (supermesh study)[J]. Updates in Surgery, 2018,70(1):77-83.
doi: 10.1007/s13304-017-0483-3
[20] YABANOGLU H, ARER I M, CALISKAN K. The effect of the use of synthetic mesh soaked in antibiotic solution on the rate of graft infection in ventral hernias: a prospective randomized study[J]. International Surgery, 2015,100(6):1040-1047.
doi: 10.9738/INTSURG-D-14-00304.1
[21] HAJIPOUR M J, FROMM K M, ASHKARRAN A A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012,30(10):499-511.
doi: 10.1016/j.tibtech.2012.06.004
[22] BROWNE K, CHAKRABORTY S, CHEN R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. International Journal of Molecular Sciences, 2020,21(19).DOI: 10.3390/ijms21197047.
doi: 10.3390/ijms21197047
[23] SANBHAL N, LI Y, KHATRI A, et al. Chitosan cross-linked bio-based antimicrobial polypropylene meshes for hernia repair loaded with levofloxacin HCl via cold oxygen plasma[J]. Coatings, 2019,9(3).DOI: 10.3390/coatings9030168.
doi: 10.3390/coatings9030168
[24] SAITAER X, SANBHAL N, QIAO Y S, et al. Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: antibacterial and drug release properties[J]. Coatings, 2019,9(3). DOI: 10.3390/coatings9030164.
doi: 10.3390/coatings9030164
[25] SANBHAL N, SAITAER X, LI Y, et al. Controlled levofloxacin release and antibacterial properties of-cyclodextrins-grafted polypropylene mesh devices for hernia repair[J]. Polymers, 2018,10(5).DOI: 10.3390/polym10050493.
doi: 10.3390/polym10050493
[26] PEREZ-KOHLER B, PASCUAL G, BENITO-MARTINEZ S, et al. Thermo-responsive antimicrobial hydrogel for the in-situ coating of mesh materials for hernia repair[J]. Polymers, 2020,12(6). DOI: 10.3390/polym12061245.
doi: 10.3390/polym12061245
[27] REINBOLD J, HIERLEMANN T, URICH L, et al. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections[J]. Drug Design Development and Therapy, 2017,11:2753-2762.
doi: 10.2147/DDDT
[28] PEREZ-KOHLER B, LINARDI F, PASCUAL G, et al. Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating[J]. Hernia, 2020,24(6):1201-1210.
doi: 10.1007/s10029-019-02096-3
[29] FERNANDEZ-GUTIERREZ M, PEREZ-KOHLER B, BENITO-MARTINEZ S, et al. Development of biocomposite polymeric systems loaded with antibacterial nanoparticles for the coating of polypropylene biomaterials[J]. Polymers, 2020,12(8). DOI: 10.3390/polym12081829.
doi: 10.3390/polym12081829
[30] BENITO-MARTINEZ S, PEREZ-KOHLER B, RODRIGUEZ M, et al. Antibacterial biopolymer gel coating on meshes used for abdominal hernia repair promotes effective wound repair in the presence of infection[J]. Polymers, 2021,13(14). DOI: 10.3390/polym13142371.
doi: 10.3390/polym13142371
[31] SANBHAL N, MAO Y, SUN G, et al. Preparation and characterization of antibacterial polypropylene meshes with covalently incorporated beta-cyclodextrins and captured antimicrobial agent for hernia repair[J]. Polymers, 2018,10(1). DOI: 10.3390/polym10010058.
doi: 10.3390/polym10010058
[32] PEREZ-KOHLER B, BENITO-MARTINEZ S, RODRIGUEZ M, et al. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes[J]. Hernia, 2019,23(4):789-800.
doi: 10.1007/s10029-019-01917-9
[33] PEREZ-KOHLER B, FERNANDEZ-GUTIERREZ M, PASCUAL G, et al. In vitro assessment of an antibacterial quaternary ammonium-based polymer loaded with chlorhexidine for the coating of polypropylene prosthetic meshes[J]. Hernia, 2016,20(6):869-878.
doi: 10.1007/s10029-016-1537-z
[34] MUZIO G, PERERO S, MIOLA M, et al. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017,105(6):1586-1593.
doi: 10.1002/jbm.b.v105.6
[35] ADIGUZEL E N, ESEN E, AYLAZ G, et al. Do nano-crystalline silver-coated hernia grafts reduce infection?[J]. World Journal of Surgery, 2018,42(11):3537-3542.
doi: 10.1007/s00268-018-4661-3
[36] SAHA T, HOUSHYAR S, SARKER S R, et al. Nanodiamond-chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity[J]. Journal of Biomedical Materials Research Part A, 2021,109(12):2449-2461.
doi: 10.1002/jbm.a.v109.12
[37] DE M I, PRIETO I, ALBORNOZ A, et al. Plasmon-based biofilm inhibition on surgical implants[J]. Nano Letters, 2019,19(4):2524-2529.
doi: 10.1021/acs.nanolett.9b00187
[38] LIU P B, CHEN N L, JIANG J H, et al. Preparation and in vitro evaluation of new composite mesh functionalized with cationic antimicrobial peptide[J]. Materials, 2019,12(10). DOI: 10.3390/ma12101676.
doi: 10.3390/ma12101676
[39] BUSSCHER H J, VAN H C, SUBBIAHDOSS G, et al. Biomaterial-associated infection: locating the finish line in the race for the surface[J]. Science Translational Medicine, 2012,4(153). DOI: 10.1126/scitranslmed.3004528.
doi: 10.1126/scitranslmed.3004528
[40] TANDON A, SHAHZAD K, PATHAK S, et al. Parietex(TM) composite mesh versus Dyna-Mesh((R))-IPOM for laparoscopic incisional and ventral hernia repair: a retrospective cohort study[J]. Annals of the Royal College of Surgeons of England, 2016,98(8):568-573.
doi: 10.1308/rcsann.2016.0292
[41] ZHANG T Z, ZHANG Z G, HU W J, et al. Preparation of poly(vinyl alcohol) modified polypropylene mesh and its antiadhesion efficacy in experimental hernia repair[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016,500:10-16.
[42] HU M H, LIN X D, HUANG R K, et al. Lightweight, highly permeable, biocompatible, and antiadhesive composite meshes for intraperitoneal repairs[J]. Macromolecular Bioscience, 2018,18(7). DOI: 10.1002/mabi.201800067.
doi: 10.1002/mabi.201800067
[43] EMANS P, SCHREINEMACHER M, GIJBELS M, et al. Polypropylene meshes to prevent abdominal herniation. can stable coatings prevent adhesions in the long term?[J]. Annals of Biomedical Engineering, 2009,37(2):410-418.
doi: 10.1007/s10439-008-9608-7
[44] HU W J, ZHANG Z G, ZHU L, et al. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model[J]. ACS Biomaterials Science & Engineering, 2020,6(3):1735-1743.
[45] KONAR S, GUHA R, KUNDU B, et al. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion[J]. Hernia, 2017,21(1):125-137.
doi: 10.1007/s10029-016-1484-8
[46] SEZER U A, SANKO V, GULMEZ M, et al. A polypropylene-integrated bilayer composite mesh with bactericidal and antiadhesive efficiency for hernia operations[J]. ACS Biomaterials Science & Engineering, 2017,3(12):3662-3674.
[47] SEZER U A, SANKO V, GULMEZ M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019,99:1141-1152.
[48] YANG D C, SONG Z C, SHEN J L, et al. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model[J]. Artificial Cells Nanomedicine and Biotechnology, 2020,48(1):425-434.
doi: 10.1080/21691401.2019.1709858
[49] BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization[J]. Acta Biomaterialia, 2016,31:221-230.
doi: 10.1016/j.actbio.2015.11.057
[50] BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia[J]. Acta Biomaterialia, 2018,71:318-329.
doi: 10.1016/j.actbio.2018.02.014
[51] 张方捷, 高国栋, 叶静, 等. 脂肪干细胞覆膜聚丙烯补片减轻疝修补术后炎症反应的研究[J]. 浙江中西医结合杂志, 2017,27(3):180-183.
ZHANG Fangjie, GAO Guodong, YE Jing, et al. Effect of adipose-derived stem cells coated polypropylene patch on the inflammation after herniorrhaphy[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2017,27(3):180-183.
[52] DENG Y, REN J, CHEN G, et al. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen[J]. Journal of Biomaterials Applications, 2016,31(2):302-314.
doi: 10.1177/0885328216645950
[53] LO T, LIN Y H, YUSOFF F M, et al. The immunohistochemical and urodynamic evaluation towards the collagen-coated and non-coated polypropylene meshes implanted in the pelvic wall of the rats[J]. Scientific Reports, 2016,6(1):1-9.
doi: 10.1038/s41598-016-0001-8
[54] ACKERMANN M, WANG X, WANG S, et al. Collagen-inducing biologization of prosthetic material for hernia repair: polypropylene meshes coated with polyP/collagen[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,106(6):2109-2121.
doi: 10.1002/jbm.b.v106.6
[55] QIAO Y S, ZHANG Q, WANG Q, et al. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects[J]. Acta Biomaterialia, 2021,128:277-290.
doi: 10.1016/j.actbio.2021.04.013
[56] QIAO Y S, ZHANG Q, WANG Q, et al. Synergistic anti-inflammatory coating "zipped up" on polypropylene hernia mesh[J]. ACS Applied Materials & Interfaces, 2021,13(30):35456-35468.
[57] COINDRE V F, CARLETON M M, SEFTON M V. Methacrylic acid copolymer coating enhances constructive remodeling of polypropylene mesh by increasing the vascular response[J]. Advanced Healthcare Materials, 2019,8(18). DOI: 10.1002/adhm.201900667.
doi: 10.1002/adhm.201900667
[58] PRUDENTE A, FAVARO W J, REIS L O, et al. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis[J]. International Urology and Nephrology, 2017,49(4):597-605.
doi: 10.1007/s11255-017-1520-3
[59] KARABULUT A, SIMAVLI S A, ABBAN G M, et al. Tissue reaction to urogynecologic meshes: effect of steroid soaking in two different mesh models[J]. International Urogynecology Journal, 2016,27(10):1583-1589.
doi: 10.1007/s00192-016-3013-9
[60] GIL D, REX J, COBB W, et al. Anti-inflammatory coatings of hernia repair meshes: a pilot study[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018,106(2):589-597.
doi: 10.1002/jbm.b.v106.2
[61] HACHIM D, LOPRESTI S T, YATES C C, et al. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration[J]. Biomaterials, 2017,112:95-107.
doi: 10.1016/j.biomaterials.2016.10.019
[62] DU S P, GARCIA A G, VERGES J, et al. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate[J]. Journal of Cellular and Molecular Medicine, 2009,13(8A):1451-1463.
doi: 10.1111/j.1582-4934.2009.00826.x
[63] VENAULT A, CHANG Y. Designs of zwitterionic interfaces and membranes[J]. Langmuir, 2018,35(5):1714-1726.
doi: 10.1021/acs.langmuir.8b00562
[1] LI Tianhua, LI Jingjing, ZHANG Keqin, ZHAO Huijing, MENG Kai. Numerical simulation of hemodynamics in spiral artificial blood vessel [J]. Journal of Textile Research, 2022, 43(03): 17-23.
[2] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[3] WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16.
[4] LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76.
[5] CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136.
[6] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[7] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[8] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[9] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[10] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[11] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[12] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[13] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[14] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[15] LIU Bingqian, SHENG Dan, PAN Heng, CAO Genyang. Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers [J]. Journal of Textile Research, 2019, 40(04): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!