Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (03): 60-66.doi: 10.13475/j.fzxb.20220803407

• Textile Engineering • Previous Articles     Next Articles

Preparation and UV stability of flame-retardant acrylic/aramid core-spun yarns

WU Junxiong1, WEI Xia1,2(), LUO Jingxian1, YAN Jiaoru1, WU Lei1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an, Shaanxi 710048, China
  • Received:2022-08-15 Revised:2022-12-21 Online:2023-03-15 Published:2023-04-14

Abstract:

Objective Aramid fiber has become the most widely used high performance fiber for protective fabrics because of its good flame retardancy and chemical stability. But, due to the penetration of the molecular chain contains a lot of chromogenic groups, it is prone to aging degradation under high-energy rays, especially UV light, and the UV aging performance seriously affected usability of the aramid products used outdoors. Therefore, it is necessary to study how to improve the UV aging resistance of aramid fiber in fabrics.

Method Aiming at the problem of poor UV light stability and easy photodegradation and aging of aramid, the core-spun yarn structure was adopted to block the direct UV irradiation of aramid by covering the aramid core with flame-retardant acrylic fibers. Five core-spun yarns were designed, including aramid/aramid, flame-retardant acrylic/aramid, modacrylic/aramid, flame-retardant acrylic/flame-retardant viscose/aramid and flame-retardant acrylic/flame-retardant Modal/aramid. The core-spun yarns were used as weft and aramid as warp to weave fabrics, and the UV aging, comfort and flame retardant properties were tested.

Results Compared with pure aramid fabric, the UV protection coefficient of flame-retardant acrylic/aramid fabric, flame-retardant acrylic/flame-retardant viscose/aramid fabric and flame-retardant acrylic/flame-retardant Modal/aramid fabric increased by 25.8%, 18.7% and 20.8%, respectively(Fig.4), while the fracture strength decreased by 23.1%, 37.9% and 27.0%, respectively(Fig.1). The continuous combustion time was prolonged by 0.9 s, 0.2 s and 0.2 s respectively, and the smoldering time was prolonged by 0.3 s, 0.4 s and 0.7 s respectively. The fracture strengths of pure aramid yarn, flame-retardant acrylic/aramid yarn, flame-retardant acrylic/flame-retardant viscose/aramid yarn and flame-retardant acrylic/flame-retardant Modal/aramid yarn decreased by 43.6%, 5.9%, 8.3% and 9.1%, respectively(Fig.2). The comfort of flame-retardant acrylic/aramid fabric decreases, but the comfort of flame-retardant acrylic/flame-retardant viscose/aramid fabric increases.

Conclusion Before UV aging, the breaking strength of pure aramid fabric is the largest, and the breaking strength of nitrile and chloroprene fabric is the smallest. After 18 months of UV-accelerated aging, the breaking strength of the fabrics with flame-retardant acrylic fibers decreases, but that with flame-retardant acrylic fibers decreases the most, and that with flame-retardant acrylic fibers/aramid fibers decreases the least.The UV transmittance of flame-retardant acrylic/aramid fabric is the lowest, and the UV transmittance of pure aramid fabric is the highest. Flame-retardant acrylic/aramid fiber has the best UV protection performance, while pure aramid fiber has the worst. The yarn component contains flame-retardant acrylic fiber, which can effectively improve the UV resistance of the fabric, and the greater the yarn density in the same fabric, the lower the UV transmittance of the fabric. Flame-retardant acrylic/flame-retardant viscose/aramid core yarn has the best comprehensive performance, good UV stability, comfortability and flame retardant.

Key words: aramid fiber, flame-retardant acrylic fiber, core-spun yarn, UV light stability, comfortability, flame retardancy

CLC Number: 

  • TS106.4

Tab.1

Basic parameters of core-spun yarns"

包芯纱
分类号
纱线
线密度/
tex


单层 双层
捻度 捻向 牵伸
倍数
捻度 捻向 牵伸
倍数
1 26 320 627 Z 36.4 672 Z 51.9
627 S 121.2
2 38 320 519 Z 17.4 574 Z 24.8
519 S 58.0
3 55 320 431 Z 10.0 488 Z 14.3
431 S 33.3

Tab.2

Types and number of yarns"

纱线
编号
纱线类型 线密度/
tex
芯比率/
%
中层比
率/%
外层比
率/%
F1 纯芳纶/芳纶 26 56.9 43.1
F2 纯芳纶/芳纶 38 38.9 61.1
F3 纯芳纶/芳纶 55 26.9 73.1
J1 阻燃腈纶/芳纶 26 56.9 43.1
J2 阻燃腈纶/芳纶 38 38.9 61.1
J3 阻燃腈纶/芳纶 55 26.9 73.1
L1 腈氯纶/芳纶 26 56.9 43.1
L2 腈氯纶/芳纶 38 38.9 61.1
JN1 阻燃腈纶/阻燃粘胶/芳纶 26 56.9 12.9 30.2
JN2 阻燃腈纶/阻燃粘胶/芳纶 38 38.9 18.3 42.8
JN3 阻燃腈纶/阻燃粘胶/芳纶 55 26.9 21.9 51.2
JM1 阻燃腈纶/阻燃莫代尔/芳纶 26 56.9 12.9 30.2
JM2 阻燃腈纶/阻燃莫代尔/芳纶 38 38.9 18.3 42.8
JM3 阻燃腈纶/阻燃莫代尔/芳纶 55 26.9 21.9 51.2

Tab.3

Basic parameters of fabrics"

织物
规格
纱线线密度 密度/
(根·(10 cm)-1)
面密度/
(g·m-2)
紧度/
%
经纱 纬纱 经向 纬向
规格1 14.8 tex×2 26 tex 256 140 114.7 68.3
规格2 14.8 tex×2 38 tex 256 140 131.5 70.8
规格3 14.8 tex×2 55 tex 256 140 155.3 74.1

Fig.1

Breaking strength of fabrics"

Fig.2

Comparison of fabrics strength before and after aging"

Fig.3

Ultraviolet spectra of fabrics"

Fig.4

UV protection factors of fabrics"

Tab.4

Flame retardancy of fabrics"

织物编号 续燃时间/s 阴燃时间/s 损毁长度/mm 燃烧状态
ZF2 0.0 0.0 20 炭化、收缩
ZJ1 1.2 0.4 63 炭化
ZJ2 0.9 0.3 58 炭化
ZJ3 0.8 0.3 50 炭化
ZL2 0.4 0.9 49 炭化
ZJN2 0.2 0.4 39 炭化
ZJM2 0.2 0.7 54 炭化

Tab.5

Comfort properties of fabrics"

织物种类 回潮率/% 透气率/(mm·s-1) 透湿率/(g·m-2·d-1) 芯吸高度/mm 保暖率/% 抗弯刚度/(mN·cm)
纯芳纶 5.80 1 054.8 2 596.29 132.5 36.42 1.359
阻燃腈纶/芳纶 4.28 960.9 3 824.34 110.0 34.96 1.148
腈氯纶/芳纶 4.76 937.7 3 533.55 117.0 36.13 1.055
阻燃腈纶/阻燃粘胶/芳纶 5.25 1 156.1 4 058.00 136.5 39.37 1.619
阻燃腈纶/阻燃莫代尔/芳纶 5.17 1 090.7 4 013.86 128.5 38.68 1.788
[1] 刘婷娅. 中美阻燃防护服标准比对分析研究[J]. 中国石油和化工标准与质量, 2020, 40(16): 13-14, 16.
LIU Tingya. Comparative analysis of Chinese and American flame retardant protective clothing standards[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(16): 13-14, 16.
[2] DING Fang, ZHANG Shumin, CHEN Xiaoyan, et al. PET fabric treated with environmental-friendly phosphorus-based compounds for enhanced flame retardancy, thermal stability and anti-dripping performance[J]. Composites Part B: Engineering, 2022.DOI: 10.1016/J.COMPOSITESB.2022.109791.
doi: 10.1016/J.COMPOSITESB.2022.109791
[3] 李金凤, 蒋巍. 阻燃剂的复配协效技术及纺织品的阻燃整理[J]. 高分子通报, 2022(1): 46-55.
LI Jinfeng, JIANG Wei. Compounding and coactivity technology of flame retardants and flame retardant finishing of textiles[J]. Polymer Bulletin, 2022(1): 46-55.
[4] 魏枫, 裴勇勇, 徐海兵, 等. 芳香族聚酰胺纤维抗紫外老化的研究进展[J]. 复合材料科学与工程, 2022(6): 115-121.
WEI Feng, PEI Yongyong, XU Haibing, et al. Research progress on UV aging resistance of aromatic polyamide fiber[J]. Composites Science and Engineering, 2022(6): 115-121.
[5] 马立群, 董少波, 石佳, 等. 利用废旧聚丙烯腈纤维织物制备聚丙烯用抗老化剂[J]. 中国塑料, 2017, 31(3): 82-89.
MA Liqun, DONG Shaobo, SHI Jia, et al. Preparation of anti-aging agent for polypropylene using waste polyacrylonitrile fabric[J]. China Plastics, 2017, 31(3): 82-89.
[6] 王丹妮, 聂景怡, 赵永生, 等. KH-550改性纳米二氧化钛对芳纶纳米薄膜抗紫外及力学性能的影响[J]. 高分子材料科学与工程, 2020, 36(8): 58-66.
WANG Dani, NIE Jingyi, ZHAO Yongsheng, et al. Effect of KH-550 modified nano-TiO2 on UV resistance and mechanical properties of aramid nano-film[J]. Polymer Materials Science and Engineering, 2020, 36(8): 58-66.
[7] 董威然. 抗菌腈纶毛毯的染色加工工艺[J]. 天津纺织科技, 2017(2): 23-25.
DONG Weiran. Dyeing process of antibacterial acrylic fiber blanket[J]. Tianjin Textile Science and Technology, 2017(2): 23-25.
[8] 尉霞. 产业用纺织品设计与生产[M]. 上海: 东华大学出版社, 2009: 26-28.
WEI Xia. Design and production of industrial textiles[M]. Shanghai: Donghua University Press, 2009: 26-28.
[9] 颜梦佳, 唐洁芳, 丁笑君, 等. 织物结构参数对芳纶织物阻燃性能的影响[J]. 现代纺织技术, 2019, 27(1): 27-31.
YAN Mengjia, TANG Jiefang, DING Xiaojun, et al. Influence of fabric structure parameters on flame retardation of aramid fabric[J]. Advanced Textile Technology, 2019, 27(1): 27-31.
[10] 李慧, 宋晓霞. 吸湿排汗针织面料设计及热湿舒适性评价[J]. 服装学报, 2022, 7(3): 196-201, 208.
LI Hui, SONG Xiaoxia. Design and evaluation of thermal and wet comfort of hygroscopic and perspiration wicking knitted fabrics[J]. Journal of Clothing Research, 2022, 7(3): 196-201, 208.
[11] LIYEW Erkihun Zelalem. Effect of the imperfection of open-end yarn (thin, thick, and nep place) on air permeability of plain woven fabric[J]. Journal of Engineering, 2022. DOI: 10.1155/2022/8710495.
doi: 10.1155/2022/8710495
[12] 王丽, 郭嫣, 熊艳丽. 探讨提高织物透湿性的方法:以校服为例[J]. 纺织报告, 2017(11): 45-47.
WANG Li, GUO Yan, XIONG Yanli. Discussion on ways to improve moisture permeability of fabric: taking school uniform as an example[J]. Textile Reports, 2017(11): 45-47.
[13] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic and hydrophobic micro-nano fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University (Natural Science), 2020, 46(5): 694-702.
[14] 仵玉芝, 刘向, 郑冬明, 等. 微胞式保暖织物的结构设计及对保暖性的影响[J]. 纺织导报, 2018(9): 94-96.
WU Yuzhi, LIU Xiang, ZHENG Dongming, et al. Structural design of micro-cell thermal fabric and its effect on thermal preservation[J]. China Textile Leader, 2018(9): 94-96.
[15] 代萌婷, 屠晔. 衣下空气层对咖啡碳纤维防寒服保暖性的影响[J]. 丝绸, 2021, 58(11): 33-39.
DAI Mengting, TU Ye. Effect of air layer under clothing on the thermal preservation of carbon fiber cold clothing for coffee[J]. Journal of Silk, 2021, 58(11): 33-39.
[16] 苏萌, 任放, 俞鸣明, 等. 温度和纱线捻向对自润滑织物复合材料摩擦磨损性能的影响[J]. 高分子材料科学与工程, 2019, 35(9): 82-88, 94.
SU Meng, REN Fang, YU Mingming, et al. Effect of temperature and yarn twist direction on friction and wear properties of self-lubricating fabric composites[J]. Polymer Materials Science and Engineering, 2019, 35(9): 82-88, 94.
[1] ZHOU Xinru, HU Chengye, FAN Mengjing, HONG Jianhan, HAN Xiao. Electric field simulation of two-needle continuous water bath electrospinning and structure of nanofiber core-spun yarn [J]. Journal of Textile Research, 2023, 44(02): 27-33.
[2] ZHANG Shucheng, XING Jian, XU Zhenzhen. Preparation and properties of multilayer sound absorption materials based on waste polyphenylene sulfide filter materials [J]. Journal of Textile Research, 2022, 43(12): 35-41.
[3] GUO Yafei, LIANG Gaoyong, WANG Meihui, HAO Xinmin. Effect of ozone plasma pretreatment on dyeing properties of aramid fibers [J]. Journal of Textile Research, 2022, 43(10): 83-88.
[4] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[5] LI Ningning, ZHANG Zhaohua, XU Suhong, ZHENG Ziyi, LI Xiaoyu. Distribution characteristics of local skin moisture sensitivity of human in thermal environment [J]. Journal of Textile Research, 2022, 43(09): 182-187.
[6] ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33.
[7] XIONG Yonghui, WANG Dong, DU Changsen, FU Shaohai. Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber [J]. Journal of Textile Research, 2022, 43(07): 22-28.
[8] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[9] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[10] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
[11] ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134.
[12] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[13] WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics [J]. Journal of Textile Research, 2021, 42(04): 132-138.
[14] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[15] XU Daifang. Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams [J]. Journal of Textile Research, 2020, 41(05): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!