Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 126-136.doi: 10.13475/j.fzxb.20241004201
• Textile Engineering • Previous Articles Next Articles
LI Xintian1, ZHOU Xuan1, WANG Zhanhuan1, DU Zhonghua1,2, XU Lizhi1(
)
CLC Number:
| [1] | 翟文, 魏汝斌, 甄建军, 等. 高性能复合材料在人体防弹防刺技术领域的应用与展望[J]. 纺织导报, 2017(S1): 66-72. |
| ZHAI Wen, WEI Rubin, ZHEN Jianjun, et al. Application and prospect of high performance composite materials in the field of bullet-proof and stab-proof technology of human body[J]. China Textile Leader, 2017(S1): 66-72. | |
| [2] | 虢忠仁, 杜文泽, 王树伦, 等. 芳纶纤维抗弹复合材料研究进展[J]. 工程塑料应用, 2009, 37(1): 75-78. |
| GUO Zhongren, DU Wenze, WANG Shulun, et al. Research development in aramid antiballistic compo-site[J]. Engineering Plastics Application, 2009, 37(1): 75-78. | |
| [3] |
TRAN P, NGO T, YANG E C, et al. Effects of architecture on ballistic resistance of textile fabrics: numerical study[J]. International Journal of Damage Mechanics, 2014, 23(3): 359-376.
doi: 10.1177/1056789513495246 |
| [4] |
CAVALLARO P V. Effects of weave styles and crimp gradients in woven kevlar/epoxy composites[J]. Experimental Mechanics, 2016, 56(4): 617-635.
doi: 10.1007/s11340-015-0075-4 |
| [5] |
ZHOU Y, CHEN X G. A numerical investigation into the influence of fabric construction on ballistic performance[J]. Composites Part B: Engineering, 2015, 76: 209-217.
doi: 10.1016/j.compositesb.2015.02.008 |
| [6] | PHAM Q H, HA-MINH C, CHU T L, et al. Numerical investigation of fibre failure mechanisms of one single Kevlar yarn under ballistic impact[J]. International Journal of Solids and Structures, 2022, 239: 111436. |
| [7] |
ZHOU Y, LI H, XIONG Z M, et al. The structural effects on the impact response of ultra-high-molecular-weight polyethylene plain weaves[J]. Textile Research Journal, 2021, 91(7/8): 911-924.
doi: 10.1177/0040517520966728 |
| [8] |
ZHOU Y, YAO W T, ZHANG Z W, et al. Ballistic performance of the structure-modified plain weaves with the improved constraint on yarn mobility: experimental investigation[J]. Composite Structures, 2022, 280: 114913.
doi: 10.1016/j.compstruct.2021.114913 |
| [9] |
CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1/2): 161-173.
doi: 10.1016/S0263-8223(03)00029-1 |
| [10] |
PARK J L, YOON B I, PAIK J G, et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid: Part I-effect of laminating sequence[J]. Textile Research Journal, 2012, 82(6): 527-541.
doi: 10.1177/0040517511420753 |
| [11] |
TABIEI A, NILAKANTAN G. Ballistic impact of dry woven fabric composites: a review[J]. Applied Mechanics Reviews, 2008, 61: 010801.
doi: 10.1115/1.2821711 |
| [12] |
NILAKANTAN G, GILLESPIE J W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects[J]. Composite Structures, 2012, 94(12): 3624-3634.
doi: 10.1016/j.compstruct.2012.05.030 |
| [13] |
INGLE S, YERRAMALLI C S, GUHA A, et al. Effect of material properties on ballistic energy absorption of woven fabrics subjected to different levels of inter-yarn friction[J]. Composite Structures, 2021, 266: 113824.
doi: 10.1016/j.compstruct.2021.113824 |
| [14] |
DUAN Y, KEEFE M, BOGETTI T A, et al. A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact[J]. International Journal of Impact Engineering, 2006, 32(8): 1299-1312.
doi: 10.1016/j.ijimpeng.2004.11.005 |
| [15] |
GRUJICIC M, BELL W C, HE T, et al. Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric[J]. Journal of Materials Science, 2008, 43(18): 6301-6323.
doi: 10.1007/s10853-008-2893-6 |
| [16] |
YANG Y F, LIU Y C, XUE S N, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles[J]. Composite Structures, 2021, 267: 113856.
doi: 10.1016/j.compstruct.2021.113856 |
| [17] |
PALTA E, FANG H. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics[J]. Composite Structures, 2019, 207: 488-508.
doi: 10.1016/j.compstruct.2018.09.080 |
| [18] |
MEYER C S, O'BRIEN D J, (GAMA) HAQUE B Z, et al. Mesoscale modeling of ballistic impact experiments on a single layer of plain weave compo-site[J]. Composites Part B: Engineering, 2022, 235: 109753.
doi: 10.1016/j.compositesb.2022.109753 |
| [19] |
CHOCRON S, FIGUEROA E, KING N, et al. Modeling and validation of full fabric targets under ballistic impact[J]. Composites Science and Technology, 2010, 70(13): 2012-2022.
doi: 10.1016/j.compscitech.2010.07.025 |
| [1] | DU Yuhang, HOU Dongyu, QI Pengfei. Design and optimization of power supply for smart clothing based on triboelectric nanogenerator principles [J]. Journal of Textile Research, 2025, 46(11): 211-220. |
| [2] | HAN Zhihui, WAN Ailan, HONG Liang, GAO Lizhong, XIA Fenglin. Damage analysis and finite element simulation of wool yarn in warping [J]. Journal of Textile Research, 2025, 46(07): 103-110. |
| [3] | CHEN Xinwei, GU Bingfei, TIAN Jiali, ZHOU Sifan, LIU Yuxi, LIU Jinling, YICK Kit-lun, SUN Yue. Optimization design method for sports bra using CAD/CAE technology [J]. Journal of Textile Research, 2025, 46(04): 162-170. |
| [4] | TAO Jing, WANG Junliang, ZHANG Jie. Data-driven finite element simulation for yarn breaking strength analysis [J]. Journal of Textile Research, 2024, 45(02): 238-245. |
| [5] | GU Yuanhui, WANG Shudong, ZHANG Diantang. Finite element simulation of torsion behavior of braided composite tube based on multi-scale model [J]. Journal of Textile Research, 2023, 44(12): 88-95. |
| [6] | GE Cheng, ZHENG Yuansheng, LIU Kai, XIN Binjie. Influence of voltage on forming process of electrospinning beaded fiber [J]. Journal of Textile Research, 2023, 44(03): 36-41. |
| [7] | WU Jiayue, WU Qiaoying. Finite element simulation of heat transfer through down coat panel [J]. Journal of Textile Research, 2022, 43(11): 154-162. |
| [8] | LIU Xueyan, JIANG Gaoming. Size prediction of knitted sports pressure socks based on ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 79-85. |
| [9] | XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78. |
| [10] | HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28. |
| [11] | NIU Xuejuan, XU Yanhui. Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions [J]. Journal of Textile Research, 2022, 43(06): 165-170. |
| [12] | MA Ying, LIU Yueyan, ZHAO Yang, CHEN Xiang, LU Sheng, HU Hanjie. Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry [J]. Journal of Textile Research, 2022, 43(04): 47-54. |
| [13] | SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112. |
| [14] | DAI Ning, PENG Laihu, HU Xudong, CUI Ying, ZHONG Yaosen, WANG Yuefeng. Method for testing natural frequency of weft knitting needles in free state [J]. Journal of Textile Research, 2020, 41(11): 150-155. |
| [15] | ZHOU Yi, LI Hang, YAN Xiangbang, LIANG Yaoting, ZHANG Zhongwei. Influence of layer spacing on ballistic performance of double-plied plain fabric target [J]. Journal of Textile Research, 2020, 41(11): 59-65. |
|
||