Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 22-28.doi: 10.13475/j.fzxb.20220103207

• Manufacture and Application of High Performance Flexible Textile Composites • Previous Articles     Next Articles

Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film

HUANG Yaoli1, LU Cheng1, JIANG Jinhua1,2, CHEN Nanliang1,2, SHAO Huiqi3()   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-01-14 Revised:2022-03-16 Online:2022-06-15 Published:2022-07-15
  • Contact: SHAO Huiqi E-mail:hqshao@dhu.edu.cn

Abstract:

Aiming at the thermal deformation and thermodynamic problems of fiber-reinforced flexible film in service, polyimide (PI) fiber-reinforced polydimethylsiloxane (PDMS) flexible composite film was prepared with polyimide fiber as reinforcement and polydimethylsiloxane as matrix by scraper coating. The thermal stability of the composite membrane was studied using a thermogravimetric analyzer. The universal material tester and the thermomechanical analyzer were used to discuss the influence of the linear density and laying density of the oriented reinforced fiber on the mechanical properties and thermal expansion coefficient of the composite film. COMSOL finite element simulation was used to analyze the thermal expansion and deformation mechanism of fiber-oriented reinforced composite membrane. The results show that the rate of mass loss is only 1.22% at 300 ℃, indicating that the thermal stability of composite membrane below 300 ℃. With the increase of fiber layer density and linear density, the breaking strength and elastic modulus gradually increase and the thermal expansion coefficient gradually decreases, and both exhibit negative expansion characteristics, indicating that the orientation enhancement of polyimide fibers can effectively influence the dimensional stability of composite membrane materials. The correlation between the simulation and the experimental results is good, indicating that the model can be used to predict and optimize the thermal expansion coefficient of PI fiber-reinforced composite membranes.

Key words: polyimide fiber, thermal stability, thermal expansion coefficiency, mechanical property, finite element simulation, composite material, polydimethylsiloxane

CLC Number: 

  • TQ343

Tab.1

Parameters of PI fiber and PDMS"

材料 热膨胀系数/
(μm·(m·℃)-1)
恒压热容/
(J·(kg·K)-1)
导热系数/
(W·(m·K)-1)
密度/
(kg·m-3)
弹性模量/
MPa
泊松比
PI纤维 -2.00 1 100 0.15 1 440 20 000 0.30
PDMS 187 1 460 0.16 970 0.75 0.49

Fig.1

Thermal stability of PI fiber, PDMS and reinforced films. (a) TG curve; (b) DTG curve"

Fig.2

Stress-strain curve of PI fiber, PDMS film and PI fiber-reinforced films with different layer densities"

Tab.2

Mechanical properties of PDMS film and PI fiber its reinforced films with different layer densities"

铺层密度/
(根·(10 cm)-1)
断裂强度/
MPa
弹性模量/
MPa
PDMS膜 2.0±0.05 0.5±0.02
30 13.73±0.26 236±5.21
50 23.07±2.70 365±1.41
70 28.24±1.89 537±6.46
90 41.02±3.14 628±3.20

Fig.3

Stress-strain curve of PI-fiber reinforced films with different linear densities"

Tab.3

Mechanical properties of PI fiber reinforced films with different linear densities"

线密度/tex 断裂强度/MPa 弹性模量/MPa
6 15.92±2.50 293±1.61
11 18.81±1.44 365±1.41
22 21.25±0.37 470±6.37

Tab.4

Thermal expansion coefficient of PI fiber reinforcedμm/(m·℃)"

PI纤维 PDMS 不同铺展密度的纤维增强膜
30 50 70 90
-3.44±0.07 187.71±3.93 -1.66±0.25 -2.18±0.02 -5.24±0.03 -7.54±0.04

Fig.4

Cloud diagram of deformation(a) and temperature (b) at 140 ℃"

Fig.5

Boundary displacement change distribution"

[1] 王洁斌, 何莹莹, 黄奎. 新型PE骨架膜结构在原料料场封闭工程中的应用[J]. 中国科技纵横, 2021(7):13-14.
WANG Jiebin, HE Yingying, HUANG Kui. Application of new PE framework membrane structure in the raw material stockyard enclosure project[J]. China Science & Technology Overview, 2021(7): 13-14.
[2] 院老虎, 康雪, 连冬杉, 等. 空间薄膜结构充气展开研究[J]. 南京航空航天大学学报, 2021, 53(1):27-34.
YUAN Laohu, KANG Xue, LIAN Dongshan, et al. Study on inflatable expansion of space thin film structure[J]. Journal of Nanjing University of Aero-nautics & Astronautics, 2021, 53(1):27-34.
[3] 杨涛, 丁辛, 杨旭东, 等. 建筑用膜结构材料的发展现状和趋势[J]. 纺织导报, 2019(z1):95-97.
YANG Tao, DING Xin, YANG Xudong, et al. Application status and trend of membrane materials in architecture fields[J]. China Textile Leader, 2019(z1): 95-97.
[4] 汪泽幸, 吴波, 朱文佳, 等. 应力回复对PVC膜材应力松弛行为的影响[J]. 东华大学学报(自然科学版), 2020, 46(5):712-718.
WANG Zexing, WU Bo, ZHU Wenjia, et al. Effect of stress reversal on the stress relaxation behavior of PVC membrane[J]. Journal of Donghua Uuiversity (Natural Science), 2020, 46(5):712-718.
[5] 高春梅, 孟彦宾, 奚旦立. PVDF/PVC膜化学稳定性研究[J]. 纺织学报, 2008, 29(1):17-21.
GAO Chunmei, MENG Yanbin, XI Danli. Study on the chemical stability of PVDF/PVC membrane[J]. Journal of Textile Research, 2008, 29(1):17-21.
[6] 邵青青, 杜赵群, 郑冬明, 等. PTFE膜复合织物的防水透湿性能研究[J]. 产业用纺织品, 2020, 38(3):36-40.
SHAO Qingqing, DU Zhaoqun, ZHENG Dongming, et al. Study on waterproof and moisture permeability of PTFE film composite fabrics[J]. Technical Textiles, 2020, 38(3):36-40.
[7] 徐长亚, 叶雪康, 陈连星, 等. 现代建筑用PVC膜结构复合材料工艺研究[J]. 产业用纺织品, 2008(6):37-39.
XU Changya, YE Xuekang, CHEN Lianxing, et al. The discussion about modern structural use PVC membrane structure compound material craft[J]. Technical Textiles, 2008(6):37-39.
[8] PENG Chaoyi, XING Suli, YUAN Zhiqing, et al. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Applied Surface Science, 2012, 259:764-768.
doi: 10.1016/j.apsusc.2012.07.118
[9] 童婷, 张营堂, 马飞. PVDF基复合材料的制备及热学性质研究[J]. 陕西理工学院学报(自然科学版), 2014, 30(6):1-6.
TONG Ting, ZHANG Yingtang, MA Fei. Study on preparation and thermal properties of PVDF compo-sites[J]. Journal of Shaanxi University of Technology(Nature Science Edition), 2014, 30(6): 1-6.
[10] 朱聪聪, 陈南梁. PTFE-玻璃纤维建筑膜材料的发展和生产工艺[J]. 新型建筑材料, 2013, 44(1):34-36.
ZHU Congcong, CHEN Nanliang. Development and production process of PTFE-fiber glass fabric architectural membranes[J]. New Building Materials, 2013, 44(1):34-36.
[11] ZHAO Yunhong, ZHANG Yafei, BAI Shulin, et al. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties[J]. Composites Part B Engineering, 2016, 94(6):102-108.
doi: 10.1016/j.compositesb.2016.03.056
[12] SHI Yingli, HU Min, XING Yufeng, et al. Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites[J]. Materials & Design, 2019, 185:1-7.
[13] FANG Chengfeng, BIAN Zuguang, PAN Peng, et al. Experimental and theoretical study on thermal properties of porous PDMS[J]. Mechanics of Advanced Materials and Structures, 2021, 28(1/12):784-790.
doi: 10.1080/15376494.2019.1597228
[14] 林芳兵, 蒋金华, 陈南梁, 等. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(5): 14-19.
LIN Fangbing, JIANG Jinhua, CHEN Nanliang, et al. High-performance polyimide fiber and its weava-bility[J]. Journal of Textile Research, 2018, 39(5): 14-19.
[15] 杜晓冬, 林芳兵, 蒋金华, 等. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(9):22-27.
DU Xiaodong, LIN Fangbing, JIANG Jinhua, et al. Influence of oxygen plasma modification on surface properties of polyimide fiber[J]. Journal of Textile Research, 2019, 40(9):22-27.
[16] 白琼琼. 高性能纤维的发展现状及展望[J]. 毛纺科技, 2021, 49(6):91-94.
Bai Qiongqiong. Review on the development of high performance fiber[J]. Wool Textile Journal, 2021, 49(6): 91-94.
[17] 王晓东, 朱辅华, 黄培. 聚酰亚胺-聚四氟乙烯复合材料的制备和表征[J]. 南京工业大学学报(自然科学版), 2011, 33(4):16-19.
WANG Xiaodong, ZHU Fuhua, HUANG Pei. Preparation and characterization of PI-PTFE compsite materials[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(4):16-19.
[18] 董晗, 郑森森, 郭涛, 等. 高耐热聚酰亚胺纤维的制备及其性能[J]. 纺织学报, 2022, 43(2):19-23.
DONG Han, ZHENG Sensen, GUO Tao, et al. Preparation and properties of high heat-resistant polyimide fiber[J]. Journal of Textile Research, 2022, 43 (2):19-23.
doi: 10.1177/004051757304300103
[1] NIU Xuejuan, XU Yanhui. Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions [J]. Journal of Textile Research, 2022, 43(06): 165-170.
[2] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
[3] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[4] XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78.
[5] LIU Xueyan, JIANG Gaoming. Size prediction of knitted sports pressure socks based on ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 79-85.
[6] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[7] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[8] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[9] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[10] YE Wei, YU Jin, LONG Xiaoyun, SUN Qilong, MA Yan. Electromagnetic wave absorption performance of loofah-based carbon materials [J]. Journal of Textile Research, 2022, 43(04): 33-39.
[11] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[12] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[13] DONG Han, ZHENG Sensen, GUO Tao, DONG Jie, ZHAO Xin, WANG Shihua, ZHANG Qinghua. Preparation and properties of high heat-resistant polyimide fiber [J]. Journal of Textile Research, 2022, 43(02): 19-23.
[14] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[15] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!