Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (09): 9-18.doi: 10.13475/j.fzxb.20250306301
• Academic Salon Column for New Insight of Textiles Science and Technology: Camouflage and Electromagnetic Shielding Technologies and Applications • Previous Articles Next Articles
CLC Number:
| [1] |
FAN W, QU H J, ZHAO Q L, et al. Cobalt phosphide decorated on reduced graphene oxide with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds, 2022, 925: 166636.
doi: 10.1016/j.jallcom.2022.166636 |
| [2] |
JIA Z R, SUN L F, GAO Z G, et al. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption[J]. Nano Research, 2024, 17(11): 10099-10108.
doi: 10.1007/s12274-024-6939-0 |
| [3] |
LAN D, HU Y, WANG M, et al. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands[J]. Composites Communications, 2024, 50: 101993.
doi: 10.1016/j.coco.2024.101993 |
| [4] |
KIM M S, MIN E H, KOH J G. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(6): 581-585.
doi: 10.1016/j.jmmm.2008.09.033 |
| [5] |
WANG C J, WANG Y X, JIANG H T, et al. Three-dimensional bamboo-like amorphous N/S Co-doped carbon nanotubes encapsulated with Cu nanoparticles/carbon fiber heterostructures for boosting electromagnetic wave absorbing properties[J]. Ceramics International, 2023, 49(2): 2792-2805.
doi: 10.1016/j.ceramint.2022.09.261 |
| [6] |
SUN J H, HUANG X X, LIU Y H, et al. Enhanced microwave absorption performance originated from interface and unrivaled impedance matching of SiO2/carbon fiber[J]. Applied Surface Science, 2023, 623: 157029.
doi: 10.1016/j.apsusc.2023.157029 |
| [7] |
ZHAO X X, HUANG Y, JIANG H Y, et al. Carbon fibers coated with floral MoSe2 are applied to high-performance electromagnetic absorbing materials[J]. Journal of Alloys and Compounds, 2024, 986: 174067.
doi: 10.1016/j.jallcom.2024.174067 |
| [8] |
ENTEZARI H, ALMASI KASHI M, ALIKHANZADEH-ARANI S, et al. In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties[J]. Materials Chemistry and Physics, 2021, 266: 124508.
doi: 10.1016/j.matchemphys.2021.124508 |
| [9] |
FAN B B, LI N, DAI B Z, et al. Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes[J]. Advanced Powder Technology, 2020, 31(2): 808-815.
doi: 10.1016/j.apt.2019.11.035 |
| [10] | 尚楷, 武志红, 张路平, 等. 纤维吸波材料研究进展[J]. 化工新型材料, 2019, 47(9): 24-27. |
| SHANG Kai, WU Zhihong, ZHANG Luping, et al. Research progress of fiber absorbing material[J]. New Chemical Materials, 2019, 47(9): 24-27. | |
| [11] |
ZHANG B S, FENG Y, XIONG J, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1778-1781.
doi: 10.1109/TMAG.2006.874188 |
| [12] | 吴挺华. 玻璃包覆非晶磁性微丝的制备与电磁特性研究[D]. 武汉: 华中科技大学, 2006:1-50. |
| WU Tinghua. Synthesis and electromagnetic properties of amouphous glass-covered metallic microwires[D]. Wuhan: Huazhong University of Science and Technology, 2006:1-50. | |
| [13] | 苏飞, 王晓艳, 姬金祖. 非晶铁磁纤维复合材料吸波性能的应力可调性实验研究[J]. 实验力学, 2012, 27(1): 108-113. |
| SU Fei, WANG Xiaoyan, JI Jinzu. Experimental investigations on stress adjustability of wave absorbing properties for amorphous ferromagnetic fiber filled composites[J]. Journal of Experimental Mechanics, 2012, 27(1): 108-113. | |
| [14] |
DI Y J, JIANG J J, BIE S W, et al. Collective length effect on the magnetostatic properties of arrays of glass-coated amorphous alloy microwires[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 534-539.
doi: 10.1016/j.jmmm.2007.07.015 |
| [15] | 邸永江, 江建军, 吴挺华, 等. 玻璃包覆磁性微丝的制备及微波电磁性能[J]. 功能材料, 2007, 38(2): 173-175. |
| DI Yongjiang, JIANG Jianjun, WU Tinghua, et al. Synthesis and microwave electromagnetic properties of glass-coated magnetic microwires[J]. Journal of Functional Materials, 2007, 38(2): 173-175. | |
| [16] | RAU M, IFTEMIE A, BALTAG O, et al. The study of the electromagnetic shielding properties of a textile material with amorphous microwire[J]. Advances in Electrical and Computer Engineering, 2011, 11(1): 17-22. |
| [17] | BOEHHOE O. Art of radar deception-cloaks of invisi-bility for military equipment[EB/OL].(2020-5-25). https://glavportal.com. |
| [18] |
SHI Y Y, YU L J, LI K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology, 2020, 197: 108246.
doi: 10.1016/j.compscitech.2020.108246 |
| [19] |
JI H, XIAO H, RUAN X Y, et al. An ultrathin ultralight electromagnetic absorber based on shortcut glass-coated amorphous magnetic fiber/salisbury-like screen[J]. Composite Structures, 2025, 353: 118667.
doi: 10.1016/j.compstruct.2024.118667 |
| [20] |
WANG X D, LIU J S, QIN F X, et al. Microwave absorption properties of FeSiBNbCu glass-covered amorphous wires[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2574-2580.
doi: 10.1016/S1003-6326(14)63385-9 |
| [21] | GUEYE P G B, SÁNCHEZ J L, NAVARRO E, et al. Control of the length of Fe73.5Si13.5Nb3Cu1B9 microwires to be used for magnetic and microwave absorbing purposes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15644-15656. |
| [22] |
LIANG H S, LIU J L, ZHANG Y, et al. Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electro-magnetic wave absorbing material[J]. Composites Part B: Engineering, 2019, 178: 107507.
doi: 10.1016/j.compositesb.2019.107507 |
| [23] | 邹佩倚, 张森, 杨润芝, 等. 硼掺杂对螺旋碳纳米管微波吸收性能的影响研究[J]. 现代物理, 2021, 11(3): 52-58. |
|
ZOU Peiyi, ZHANG Sen, YANG Runzhi, et al. Effect of boron doping on microwave absorption properties of helical carbon nanotubes[J]. Modern Physics, 2021, 11(3): 52-58.
doi: 10.12677/MP.2021.113007 |
|
| [24] |
LIU Y J, SUN X, SONG Z M, et al. Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material[J]. Advanced Electronic Materials, 2021, 7(3): 2000970.
doi: 10.1002/aelm.v7.3 |
| [25] | 冯帅博, 强荣, 邵玉龙, 等. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(2): 69-75. |
| FENG Shuaibo, QIANG Rong, SHAO Yulong, et al. Microwave absorption performance of loofah sponge derived carbon fiber composites[J]. Journal of Textile Research, 2023, 44(2): 69-75. |
| [1] | YU Mengfei, GAO Wenli, REN Jing, CAO Leitao, PENG Ruoxuan, LING Shengjie. Preparation and properties of core-sheath fiber for triboelectric nanogenerator [J]. Journal of Textile Research, 2025, 46(05): 1-9. |
| [2] | YE Wei, YU Jin, LONG Xiaoyun, SUN Qilong, MA Yan. Electromagnetic wave absorption performance of loofah-based carbon materials [J]. Journal of Textile Research, 2022, 43(04): 33-39. |
| [3] | DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42. |
| [4] | . Anti-ultraviolet finishing and light stability of bleached wool [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 99-107. |
| [5] | . An investigation on the improvement of light fastness of polyester with an o-hydroxyphenyl-s- triazine compound [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(8): 68-72. |
| [6] | CHEN Weiguo;DAI Jinjin;WANG Xiaofang ;FANG Song;MENG Zhaocheng . Kinetics and thermodynamics of UV-absorbers taken up to polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(10): 75-81. |
| [7] | CHEN Weiguo;DAI Jinjin;WANG Zhiyong;MENG Zhaocheng;CUI Zhihua. Investigation on uptake of UV-absorber onto polyester fabric and its UV absorption properties [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 80-85. |
| [8] | XUE Yuan;YI Hong-lei;CHEN Wei-xiong;CAO Yan. Spinning principle and process technology of core-sheath filament/staple composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(10): 92-95. |
|
||