Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 101-109.doi: 10.13475/j.fzxb.20250401101
• Textile Engineering • Previous Articles Next Articles
WANG Xiaohu1,2, BAO Anna1,2, WEI Jingwen1,2, ZHAO Xiaoman1,2, HAN Xiao1,2, HONG Jianhan1,2,3,4(
)
CLC Number:
| [1] |
LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
doi: 10.1021/acsnano.2c12606 pmid: 36892156 |
| [2] |
JI D X, LIN Y G, GUO X Y, et al. Electrospinning of nanofibres[J]. Nature Reviews Methods Primers, 2024, 4: 1.
doi: 10.1038/s43586-023-00278-z |
| [3] |
WANG S G, FAN P, LIU W B, et al. Research progress of flexible electronic devices based on electrospun nanofibers[J]. ACS Nano, 2024, 18(46): 31737-31772.
doi: 10.1021/acsnano.4c13106 pmid: 39499656 |
| [4] |
WANG D Y, WANG L L, SHEN G Z. Nanofiber/nanowires-based flexible and stretchable sensors[J]. Journal of Semiconductors, 2020, 41(4): 041605.
doi: 10.1088/1674-4926/41/4/041605 |
| [5] |
MISHRA R K, MISHRA P, VERMA K, et al. Electrospinning production of nanofibrous mem-branes[J]. Environmental Chemistry Letters, 2019, 17(2): 767-800.
doi: 10.1007/s10311-018-00838-w |
| [6] |
HE M T, LI A L, ZHENG M R, et al. Shape-controllable nanofiber core-spun yarn for multifunctional applications[J]. Advanced Fiber Materials, 2024, 6(4): 1138-1151.
doi: 10.1007/s42765-024-00408-6 |
| [7] | UZABAKIRIHO P C, WANG M, WANG K, et al. High-strength and extensible electrospun yarn for wearable electronics[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 46068-46076. |
| [8] |
WU H Y, YU Y T, YU Y L, et al. A facile method for continuous production of temperature-adaptive hyperthermal management core-sheath polyurethane nanofiber yarns based on vanadium dioxide toward commercialization[J]. Journal of Energy Storage, 2024, 86: 111311.
doi: 10.1016/j.est.2024.111311 |
| [9] |
CHEN L, MEI S Q, FU K, et al. Spinning the future: the convergence of nanofiber technologies and yarn fabrication[J]. ACS Nano, 2024, 18(24): 15358-15386.
doi: 10.1021/acsnano.4c02399 pmid: 38837241 |
| [10] |
GAO Q, AGARWAL S, GREINER A, et al. Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications[J]. Progress in Materials Science, 2023, 137: 101139.
doi: 10.1016/j.pmatsci.2023.101139 |
| [11] |
ZHOU B M, JIANG X D, WANG R, et al. Developments in electrospinning of nanofiber yarns[J]. Journal of Physics: Conference Series, 2021, 1790(1): 012081.
doi: 10.1088/1742-6596/1790/1/012081 |
| [12] |
NAN N, HE J X, YOU X L, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(3): 1800338.
doi: 10.1002/admt.v4.3 |
| [13] |
ZHOU M J, XU F, MA L Y, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems[J]. Nano Energy, 2022, 104: 107885.
doi: 10.1016/j.nanoen.2022.107885 |
| [14] |
WANG X H, ZHOU X R, ZHAO X M, et al. Electric field simulation, structure and properties of nanofiber- coated yarn prepared by multi-needle water bath electrospinning[J]. Nanotechnology, 2025, 36(1): 015302.
doi: 10.1088/1361-6528/ad8422 |
| [15] |
TANG J, WU Y T, MA S D, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022, 232: 109605.
doi: 10.1016/j.compositesb.2021.109605 |
| [16] |
WANG F L, ZHANG W Y, SONG Y, et al. Wearable and cost-effective pressure sensor based on a carbon nanotube/polyurethane sponge for motion detection and gesture recognition[J]. ACS Applied Electronic Materials, 2023, 5(12): 6704-6715.
doi: 10.1021/acsaelm.3c01199 |
| [17] |
TANG K Q, GOMEZ A. Monodisperse electrosprays of low electric conductivity liquids in the cone-jet mode[J]. Journal of Colloid and Interface Science, 1996, 184(2): 500-511.
pmid: 8978553 |
| [18] |
PARK K, KANG S M, PARK J W, et al. Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment[J]. Journal of Hazardous Materials, 2021, 411: 125043.
doi: 10.1016/j.jhazmat.2021.125043 |
| [19] |
WU S P, LI K H, SHI W J, et al. Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification[J]. Carbohydrate Polymers, 2022, 294: 119756.
doi: 10.1016/j.carbpol.2022.119756 |
| [20] |
WANG X, SHI H C, PAN Z B, et al. Equipment develop and experiment study of the synchronization of electrospinning and electrospray[J]. Journal of Physics: Conference Series, 2024, 2740(1): 012032.
doi: 10.1088/1742-6596/2740/1/012032 |
| [21] |
SI Y F, SHI S, HU J L. Electrospinning and electrospraying synergism: twins-tech collaboration across dimensions[J]. Matter, 2024, 7(4): 1373-1405.
doi: 10.1016/j.matt.2024.01.009 |
| [22] |
CAO J W, LIANG F, LI H Y, et al. Ultra-robust stretchable electrode for e-skin: in situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction[J]. InfoMat, 2022, 4(4): e12302.
doi: 10.1002/inf2.v4.4 |
| [23] | GONG M F, TU C L, LIN X T, et al. Liquid Metal-Graphene composite conductive nanofiber flexible pressure sensor for dynamic health monitoring[J]. Materials & Design, 2025, 252: 113811. |
| [24] |
LEPAK-KUC S, TABOROWSKA P, TRAN T Q, et al. Washable, colored and textured, carbon nanotube textile yarns[J]. Carbon, 2021, 172: 334-344.
doi: 10.1016/j.carbon.2020.10.045 |
| [25] |
HE S S, HONG Y, LIAO M, et al. Flexible sensors based on assembled carbon nanotubes[J]. Aggregate, 2021, 2(6): e143.
doi: 10.1002/agt2.v2.6 |
| [26] |
CHEN D P, CAI Y Z, CHENG L F, et al. Structure and function design of carbon nanotube-based flexible strain sensors and their application[J]. Measurement, 2024, 225: 113992.
doi: 10.1016/j.measurement.2023.113992 |
| [27] |
WANG R, SUN L F, ZHU X Y, et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications[J]. Advanced Materials Technologies, 2023, 8: 2200855.
doi: 10.1002/admt.v8.1 |
| [1] | LIU Ke, WANG Yuxi, CHENG Pan, ZHU Liping, XIA Ming, MEI Tao, XIANG Yang, ZHOU Feng, GAO Fei, WANG Dong. Preparation of porous sulfonated hydrogenated styrene-butadiene block copolymer fiber membrane and its adsorption performance for lysozyme [J]. Journal of Textile Research, 2025, 46(12): 1-10. |
| [2] | SHI Binlin, DONG Zhijia, MA Pibo, CONG Honglian, WU Guangjun, LIU Bo. Structural design of robot neck joint covering using whole-garment knitting technology [J]. Journal of Textile Research, 2025, 46(12): 116-122. |
| [3] | LI Zongjie, LI Tengfei, LU Yihan, KANG Weimin. Research progress in coupled electrospinning of multifunctional and multilevel structured nanofiber filtration materials [J]. Journal of Textile Research, 2025, 46(12): 19-28. |
| [4] | YANG Mengxiao, QIU Xiaoxue, WU Fang, LIU Lin, YAO Juming. Preparation and strain sensing performance of silk-based conductive hydrogel fibers [J]. Journal of Textile Research, 2025, 46(12): 49-56. |
| [5] | GAO Jun, LING Lei, CHEN Yuan, WU Dingsheng, LIN Hanlei, LI Zhenyu, FENG Quan. Preparation and Cr(Ⅵ) adsorption of amino-functionalized polyacrylonitrile nanofiber membrane [J]. Journal of Textile Research, 2025, 46(12): 57-65. |
| [6] | DENG Jing, WANG Ruining, SUN Runjun, ZHANG Yajuan, GUO Haibing, LEI Ke. Sodium alginate modified waterborne polyurethane/liquid metal conductive sensing fibers for pulse monitoring [J]. Journal of Textile Research, 2025, 46(12): 74-82. |
| [7] | ZHANG Huijie, LI Dengyu, ZHOU Xuan, LI Xiuyan, WANG Bin, XU Quan. Preparation and properties of sulfonated poly(ether ether ketone) Fe-Cr redox flow battery membranes [J]. Journal of Textile Research, 2025, 46(12): 83-91. |
| [8] | HU Xinyang, WANG Hongzhi. Preparation of poly(vinylidene fluoride-trifluoride-trifluoroethylene)copolymer-based triboeletric nanogenerator and enhancement of its output power [J]. Journal of Textile Research, 2025, 46(12): 92-100. |
| [9] | SHU Zuju, YUAN Ziyu, ZHOU Fei, HUANG Xiuwen, WANG Quan, FANG Xianlong, CAO Meixue. Preparation of curcumin-loaded core-shell nanofibrous membranes and their sustained release performance [J]. Journal of Textile Research, 2025, 46(11): 26-33. |
| [10] | WANG Wenshu, WANG Jiangang, LI Hanyu, WANG Chunhong, TAN Xiaoxuan, WANG Huiquan. Preparation and hemostatic performance of alkylated chitosan/polyvinyl alcohol nanofiber membranes [J]. Journal of Textile Research, 2025, 46(11): 52-60. |
| [11] | ZHANG Dianping, CHEN Qi, XU Dengming, WANG Zuo, WANG Hao. Preparation of CuO nanofibers and its performance in non-enzymatic glucose sensor [J]. Journal of Textile Research, 2025, 46(11): 61-68. |
| [12] | XU Lili, TENG Yanfei, MA Pibo, WAN Ailan. Development and performance of outdoor functional fabrics with bionic structures [J]. Journal of Textile Research, 2025, 46(11): 94-101. |
| [13] | WU Leran, WU Nihuan, LI Lingeng, ZHONG Yi, CHEN Hongpeng, TANG Nan. Preparation and performance of antibacterial nanofiber membrane loaded with magnolol [J]. Journal of Textile Research, 2025, 46(10): 30-38. |
| [14] | MAO Ze, GAO Jun, LING Lei, WU Dingsheng, TAO Yun, ZHANG Chun, LI Shen, FENG Quan. Preparation and Cr6+ adsorption of polyacrylonitrile/polypyrrole nanofiber membrane [J]. Journal of Textile Research, 2025, 46(09): 57-65. |
| [15] | QUAN Ying, ZHANG Aiqin, ZHANG Man, LIU Shuqiang, ZHANG Yujing. Fabrication and characterization of wearable flexible strain sensors based on three-dimensional braided structures [J]. Journal of Textile Research, 2025, 46(08): 136-144. |
|
||