Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 89-95.doi: 10.13475/j.fzxb.20241204902

• Invited Column: Intelligent Fiber and Fabric Device • Previous Articles     Next Articles

Research progress and prospects in fibers and fabric-based electrochemical sensing and aqueous batteries for smart textiles

LIANG Qimin1, YAN Zhuojun1, LI Changxin1, LIU Zhifeng2, HE Sisi1()   

  1. 1. College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518000, China
    2. Department of Internal Medicine and Critical Care Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510000, China
  • Received:2024-12-23 Revised:2025-01-28 Online:2025-05-15 Published:2025-06-18
  • Contact: HE Sisi E-mail:hesisi@hit.edu.cn

Abstract:

Significance Medical health is essential for human life, and sweat's chemical substances reflect health conditions. Wearable electrochemical sensors based on sweat enable continuous, hospital-free health monitoring. Integrating sensors into fabrics maintains permeability, flexibility, and data accuracy. Reliable flexible power supply units, such as aqueous fabric batteries, ensure stable sensor operation. This integration fosters the development of convenient, comfortable, and non-invasive medical monitoring.
Progress Fabric, with its stretchability and permeability, is an ideal material for wearable electrochemical sensors to monitor sweat, detecting electrolytes, metabolites, and hormones. There are two methods for constructing electrochemical sweat-sensing fabrics: fiber-based, where sensors are seamlessly integrated into the fabric through techniques like weaving and sewing, offering flexibility, bendability, and high adaptability; and fabric-based, which is compatible with conventional processing techniques and suitable for mass production. Additionally, matching flexible power supply units is essential. Aqueous electrolytes are safer and more suitable for wearable batteries than organic ones, though they do not fully solve leakage problem. Gel-state electrolytes, with their safety and stretchability, offer unique advantages for flexible batteries. Future research should address the interface between gel-state electrolytes and electrodes for stable power supply in fabric-based sensors.
Conclusion and Prospect Reported studies have optimized material selection and fabrication methods, using fibers or fabrics as electrochemical sensing platforms to achieve a more comfortable, convenient, and non-invasive healthcare experience. In future development, the following five aspects should be emphasized: 1) The lightweight design of smart fabrics: developing manufacturing processes capable of efficient integration. 2) Sensitivity and selectivity of sensing fabrics: improving sensitivity and selectivity by optimizing materials, enhancing biomarker targeting, and refining manufacturing processes. 3) The energy density of flexible aqueous batteries: improving energy density by material innovation and electrolyte optimization. 4) Data accuracy: combining smart fabrics with AI to optimize data analysis. 5) Long-term stability: developing fiber-based substrates and active materials with strong interfacial interaction forces.

Key words: fiber device, smart fabric, electrochemical sensor, aqueous battery, flexible wearable, health management

CLC Number: 

  • O657.1

Fig.1

Timeline of wearable electrochemical sensors enabling integration with fabrics"

Tab.1

Materials and performance of fiber/fabric-based electrochemical sensors"

标志物 识别元件 灵敏度 稳定性 文献
乳酸 MIP 109.6 nA/lg[C(μmol/L)] >400次 [11]
钠离子 ISM 58.9 mV/lg[[Na+](mmol/L)] 24 h [15]
葡萄糖 MOF 425.9 μA/(mmol/L·cm2) 存储7 d [21]
尿酸 PtNP 3.4 nA/(μmol/L) 1 000次 [23]
IL-6 适配体 [25]
皮质醇 MIP [26]
钠离子 ISM 59.4 mV/lg[Na+] [27]
钾离子 ISM 56.5 mV/lg[K+] [27]
钾离子 ISM 66.0 mV/lg[K+] 存储28 d [28]
pH PANI 54.9 mV/lg[H+] [29]

Tab.2

Materials and performance of fiber/fabric-based flexible aqueous batteries"

正极‖
负极
电解
质盐
放电
电压/V
比容量/
(mA·h·g-1)
容量保
持率/%
循环
文献
LMO‖PI Li2SO4 1.40 123.00 98.0 1 000 [31]
LMO‖LTO LiCl 2.40 61.03 72.6 500 [33]
PANI‖PANI NaTFSI 1.10 122.00 [35]
LMO‖LTO LiCl 1.50 85.70 92.0 100 [36]
PANI‖Zn ZnCl2-
NH4Cl
1.15 119.41 95.4 200 [37]
PANI‖Zn ZnCl2-
NH4Cl
1.20 141.90 88.1 2 000 [38]
MnO2‖Zn ZnSO4-
MnSO4
1.32 393.00 83.9 1 300 [42]
[1] CHENG Yuemeng, WANG Kang, XU Hao, et al. Recent developments in sensors for wearable device applications[J]. Analytical and Bioanalytical Chemistry, 2021, 413(24): 6037-6057.
doi: 10.1007/s00216-021-03602-2 pmid: 34389877
[2] JIA Wenzhao, BANDODKAR Amay J, VALDES Ramirez Gabriela, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration[J]. Analytical Chemistry, 2013, 85(14): 6553-6560.
doi: 10.1021/ac401573r pmid: 23815621
[3] GAO Wei, EMAMINEJAD Sam, NYEIN Hnin Yin Yin, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
[4] CHOI Jungil, KANG Daeshik, HAN Seungyong, et al. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat[J]. Advanced Healthcare Materials, 2017. DOI: 10.1002/adhm.201601355.
[5] NYEIN Hnin YIN Yin, TAI Li Chia, NGO Quynh Phuong, et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis[J]. American Chemical Society Sensors, 2018, 3(5): 944-952.
[6] HE Wenya, WANG Chunya, WANG Huimin, et al. Integrated textile sensor patch for real-time and multiplex sweat analysis[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aax0649.
[7] WANG Liyuan, XIE Songlin, WANG Zhiyuan, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers[J]. Nature Biomedical Engineering, 2020. DOI: 10.1038/s41551-019-0462-8.
[8] WANG Lie, WANG Liyuan, ZHANG Ye, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201804456.
[9] HE Jiqing, LU Chenhao, JIANG Haibo, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021. DOI: 10.1038/s41586-021-03772-0.
[10] WANG Pengwei, MA Xiaohao, LIN Zhiqiang, et al. Well-defined in-textile photolithography towards permeable textile electronics[J]. Nature Communications, 2024, 15(1): 887-898.
doi: 10.1038/s41467-024-45287-y pmid: 38291087
[11] CHEN Yangyang, HU Xiaokang, LIANG Qimin, et al. Large-scale flexible fabric biosensor for long-term monitoring of sweat lactate[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202401270.
[12] JIANG Yuanwen, TROTSYUK Artem A, NIU Simiao, et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing[J]. Nature Biotechnology, 2023, 41(5): 652-662.
[13] SEMPIONATTO Juliane R, LASALDE Ramírez JosÉ A, MAHATO Kuldeep, et al. Wearable chemical sensors for biomarker discovery in the omics era[J]. Nature Reviews Chemistry, 2022, 6(12): 899-915.
[14] 唐丽琴, 李彦, 毛吉富, 等. 检测汗液用可穿戴电化学传感器的研究进展[J]. 纺织学报: 2023, 44(3): 221-230.
TANG Liqin, LI Yan, MAO Jifu, et al. Research progress on wearable electrochemical sensors for sweat detection[J]. Journal of Textile Research, 2023, 44(3): 221-230.
[15] XU Changhao, SONG Yu, SEMPIONATTO Juliane R, et al. A physicochemical-sensing electronic skin for stress response monitoring[J]. Nature Electronics, 2023. DOI: 10.1038/s41928-023-01116-6.
[16] VEDER Jean-Pierre, MARCO Roland De, CLARKE Graeme, et al. Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes[J]. Analytical Chemistry, 2008, 80(17): 6731-6740.
doi: 10.1021/ac800823f pmid: 18671410
[17] JOON Narender Kumar, HE Ning, RUZGAS Tautgirdas, et al. PVC-based ion-selective electrodes with a silicone rubber outer coating with improved analytical performance[J]. Analytical Chemistry, 2019, 91(16): 10524-10531.
doi: 10.1021/acs.analchem.9b01490 pmid: 31333015
[18] LIANG Xinshuo, ZHANG Shuai, MENG Shuo, et al. A non-enzymatic flexible and wearable sensor based on thermal transfer printing technology for continuous glucose detection in sweat[J]. Microchemical Journal, 2024. DOI: 10.1016/i.microc.2024.111690.
[19] QING Xing, CHEN Huijun, ZENG Fanjia, et al. All-fiber integrated thermoelectrically powered physiological monitoring biosensor[J]. Advanced Fiber Materials, 2023, 5(3): 1025-1036.
[20] LIU Tianjiao, GUO Yuqi, ZHANG Zhenfang, et al. Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose[J]. Sensors and Actuators B: Chemical, 2019. DOI: 10.1016/j.snb.2019.02.006.
[21] SHU Yun, SU Tong, LU Qin, et al. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection[J]. Analytical Chemistry, 2021, 93(48): 16222-16230.
[22] YANG Yiran, SONG Yu, BO Xiangjie, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 2020, 38(2): 217-224.
doi: 10.1038/s41587-019-0321-x pmid: 31768044
[23] ZHANG Anning, ZHOU Liangliang, LIANG Qimin, et al. All-in-one multifunctional and stretchable electrochemical fiber enables health-monitoring textile with trace sweat[J]. Science China Materials, 2023, 67(1): 251-260.
[24] MARQUES-DEAK Andrea, CIZZA Giovanni, ESKANDARI Farideh, et al. Measurement of cytokines in sweat patches and plasma in healthy women: validation in a controlled study[J]. Journal of Immunological Methods, 2006, 315(1/2): 99-109.
[25] CHU Hongwei, HU Xiaokang, LEE Cheng-Yu, et al. A wearable electrochemical fabric for cytokine monit-oring[J]. Biosens Bioelectron, 2023. DOI: 10.1016/i.bios.2023.115301.
[26] HU Xiaokang, CHEN Yangyang, WANG Xin, et al. Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for real-time stress management[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202312897.
[27] PARRILLA Marc, CANOVAS Rocío, JEERAPAN Itthipon, et al. A textile-based stretchable multi-ion potentiometric sensor[J]. Advanced Healthcare Materials, 2016, 5(9): 996-1001.
doi: 10.1002/adhm.201600092 pmid: 26959998
[28] MA Xiaohao, WANG Pengwei, HUANG Liting, et al. A monolithically integrated in-textile wristband for wireless epidermal biosensing[J]. Science Advances, 2023. DOI: 10.1126/sciadv.adj2763.
[29] WANG Pengwei, MA Xiaohao, LIN Zhiqiang, et al. Well-defined in-textile photolithography towards permeable textile electronics[J]. Nature Communications, 2020. DOI: 10.1002/adma.201902151.
[30] LI Yi, YONG Sheng, HILLIER Nicholas, et al. Screen printed flexible water activated battery on woven cotton textile as a power supply for e-textile applications[J]. Institute of Electrical and Electronics Engineers Access, 2020. DOI: 10.1109/ACCESS.2020.3038157.
[31] ZHANG Ye, WANG Yuhang, WANG Lie, et al. A fiber-shaped aqueous lithium ion battery with high power density[J]. Journal of Materials Chemistry A, 2016. DOI: 10.1039/c6ta03477b.
[32] LIU Zhuoxin, HUANG Yan, HUANG Yang, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232.
doi: 10.1039/c9cs00131j pmid: 31781706
[33] DAI Bingfei, SHI Xiaofan, PEI Xudong, et al. Synergistic dual co-solvents hybrid electrolyte design enabling high-voltage flexible aqueous lithium-ion fiber batteries[J]. Energy Storage Materials, 2024. DOI: 10.1016/i.ensm.2024.103231.
[34] FU Jinwen, SHEN Ao, ZHANG Wenyuan, et al. Construction of Bi2O3/Bi2S3hierarchical heterostructures as advanced multi-ions storage electrodes for fibrous aqueous batteries[J]. Materials Today Energy, 2025. DOI: 10.1016/j.mtener.2025.101815.
[35] HONG Yang, JIA Kangkang, ZHANG Yueyu, et al. Energetic and durable all-polymer aqueous battery for sustainable, flexible power[J]. Nature Communications, 2024. DOI: 10.1038/s41467-024-53804-2.
[36] WANG Jiacheng, YE Tingting, LI Yiran, et al. Ultrasoft all-hydrogel aqueous lithium-ion battery with a coaxial fiber structure[J]. Polymer Journal, 2022. DOI: 10.1038/s41428-022-00688-y.
[37] YU Hyunjin, LIU Guicheng, WANG Manxiang, et al. Plasma-assisted surface modification on the electrode interface for flexible fiber-shaped Zn-polyaniline batteries[J]. American Chemical Society Applied Materials & Interfaces, 2020, 12(5): 5820-5830.
[38] SHIM Gayoung, TRAN Minhxuan, LIU Guicheng, et al. Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesulfonic acid-doped aqueous gel electrolyte[J]. Energy Storage Materials, 2021. DOI: 10.1016/j.ensm.2020.12.009.
[39] HE Qiong, CHANG Zhi, ZHONG Yue, et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect[J]. American Chemical Society Energy Letters, 2023, 8(12): 5253-5263.
[40] LI Chaowei, WANG Wenhui, LUO Jie, et al. High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202313772.
[41] YONG Sheng, HILLIER Nicholas, BEEBY Stephen. Fabrication of a flexible aqueous textile zinc-ion battery in a single fabric layer[J]. Frontiers in Electronics, 2022. DOI: 10.3389/felec.2022.866527.
[42] WANG Xiao, ZHENG Shuanghao, ZHOU Feng, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. National Science Review, 2020, 7(1): 64-72.
doi: 10.1093/nsr/nwz070 pmid: 34692018
[43] GAIKWAD Abhinav M, ZAMARAYEVA Alla M, ROUSSEAU Jamesley, et al. Highly stretchable alkaline batteries based on an embedded conductive fabric[J]. Advanced Materials, 2012, 24(37): 5071-507.
[44] WILLERT Andreas, MEUSER Garmen R, BAUMANN Reinhard, et al. Printed batteries and conductive patterns in technical textiles[J]. Japanese Journal of Applied Physics, 2018. DOI: 10.7567/JAP.57.05GB02.
[45] MIN Jihong, DEMCHYSHYN S, JULIANE R S, et al. An autonomous wearable biosensor powered by a perovskite solar cell[J]. Nature Electronics, 2023. DOI: 10.1038/s41928-023-00996-y.
[1] TANG Liqin, LI Yan, MAO Jifu, WANG Jun, WANG Lu. Research progress in wearable electrochemical sensor for sweat detection [J]. Journal of Textile Research, 2023, 44(03): 221-230.
[2] CHEN Jiahui, MEI Tao, ZHAO Qinghua, YOU Haining, WANG Wenwen, WANG Dong. Research progress in smart fabrics for thermal and humidity management [J]. Journal of Textile Research, 2023, 44(01): 30-37.
[3] LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites [J]. Journal of Textile Research, 2022, 43(10): 65-70.
[4] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[5] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
[6] WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165.
[7] . Influence of interpenetrating polymer networks thermosensitive gel on liquid moisture transfer of cotton fabric [J]. Journal of Textile Research, 2018, 39(11): 79-84.
[8] . Laser de-bonding solution for ultra-thin flexible device processing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 155-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!