Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (07): 244-252.doi: 10.13475/j.fzxb.20241207502

• Comprehensive Review • Previous Articles     Next Articles

Application progress in electronic textile manufacturing based on printing technology

ZHANG Nan1, LU Hong1,2()   

  1. 1 College of Fashion and Design, Donghua University, Shanghai 200051, China
    2 Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2024-12-31 Revised:2025-03-10 Online:2025-07-15 Published:2025-08-14
  • Contact: LU Hong E-mail:luhong@dhu.edu.cn

Abstract:

Significance The demand for comfort, nice appearance, and portability in smart products continues to grow as time goes on. Electronic textiles, because of their inherent ability to seamlessly integrate electronics, are gradually becoming a focal point in both research and industry. The widespread adoption of green and sustainable development principles has spurred the rapid growth of low-pollution printing technologies in the field of flexible electronics manufacturing. Compared to conventional printed circuit board manufacturing, printing processes eliminate the need for high-temperature procedures, thereby reducing corrosion-related pollution, conserving energy, and lowering carbon emissions. Leveraging their advantages of high efficiency, low cost, and scalability, printing technologies have opened new opportunities for electronic textile manufacturing, driving advancements in flexible electronics and smart wearable technologies.

Progress The fabrication of flexible electronics via printing technologies involves five key components. substrate materials, printable electronic materials, printing equipment, printing processes, and system design and integration. Substrate materials and printing equipment primarily rely on existing products from related fields, while the development of printable electronic materials and the optimization of printing processes are the focal points of research. Currently, ink materials mainly include metal nanoparticle-based, carbon-based, and polymer-based conductive components, with metal nanoparticle-based inks being the most widely used. Additionally, the emergence of functionally composite and environmentally friendly ink materials has further expanded the application scope and functionality of electronic printing. Printing processes are critical in determining product quality and efficiency, with commonly used methods including screen printing, inkjet printing, and roll-to-roll printing. Among these, screen printing and inkjet printing are the most prevalent. Electrohydrodynamic inkjet printing, because of its compatibility with a variety of functional materials, is considered a promising candidate to replace traditional technologies. In terms of system design and integration, the flexible hybrid electronics printing approach enables direct integration of electronic systems onto substrate materials without the need for separate fabrication and subsequent attachment. This technology provides effective support for the industrialization of flexible electronics.

Conclusion and Prospect In the future, the development of printed electronic textiles will hinge on the advancement of novel printable electronic materials, while enhancing printing precision and production efficiency remains a primary focus of technological progress. The application of eco-friendly materials and low-pollution production processes has become a hotspot, and designing portable wearable devices and smart clothing tailored to user needs represents a growing market trend. Despite the significant advantages of printing technologies in the field of electronic textiles, several challenges persist, which include (1) reliability and stability of ink materials, where the existing inks struggle to maintain consistency over extended periods, and different printing technologies impose varying requirements on ink properties, calling for development of more adaptable inks; (2) cost and technical limitations of mass production equipment, in which low-cost screen printing lacks sufficient precision while the high-precision technologies such as inkjet printing involve high equipment and consumable costs, along with complex setup and maintenance, posing barriers for small enterprises adopting advanced technologies; and (3) demand for standardization and quality certification, in which the market's need for standardized management is increasingly pressing, calling for enterprises to establish and refine standardized systems to enhance product quality and competitiveness, ensuring consistency and reliability.

Key words: printing technology, e-textiles, flexible electronics, flexible hybrid electronics printing approach, conductive inks, inkjet printing, screen printing

CLC Number: 

  • TS941

Fig.1

Carriers and applications of e-textiles"

Tab.1

Printing methods and their characteristics"

印刷方法 特点 适用范围
丝网印刷[26] 低成本、易操作、高效率 常规图案、多种基料、大面积
喷墨打印[9] 低成本、高精度、高通量 精细图案、多种基料、大规模/小批量
柔版印刷[27] 少耗墨、高速度、高质量 精细图案、高韧性柔性材料、大批量
凹版印刷[28] 高成本、高质量、高速度 复杂图案、高韧性柔性基料、大面积
胶版印刷[29] 低成本制版、易操作、低速度、高质量 精细图案、高韧性柔性基料、小面积、小批量
圆网印刷[30] 低成本、高效率、高套印精度 无缝连续图案、高韧性柔性基料、大规模
[42] 卢继洋, 汪田田, 李湘湘, 等. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(09): 1982-1995.
LU Jiyang, WANG Tiantian, LI Xiangxiang, et al. Electrojet printing flexible sensor[J]. Progress in Chemistry, 2022, 34(09): 1982-1995.
[43] 齐苗苗. 基于电喷印技术制备柔性电路及在RFID中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2020: 30-46.
Qi Miaomiao. Preparation of flexible circuit based on electrojet printing technology and its application in RFID[D]. Harbin: Harbin Institute of Technology, 2020: 30-46.
[44] 汪卓, 潘艳桥, 刘志豪, 等. 高分辨率熔融金属电流体喷印直写工艺[J]. 微纳电子技术, 2023, 60(2): 286-291.
WANG Zhuo, PAN Yanqiao, LIU Zhihao, et al. High-resolution molten metal electric fluid printing direct writing process[J]. Micro/Nano Electronics, 2023, 60(2): 286-291.
[45] 张馨宇. 基于EHD电喷的柔性压力传感器制备技术研究[D]. 南京: 南京师范大学, 2021: 46-58.
ZHANG Xinyu. Research on preparation technology of flexible pressure sensor based on EHD EFI[D]. Nanjing: Nanjing Normal University, 2021: 46-58.
[46] AFROI S, KARIM M N, ABDELKADERB A, et al. Inkjet printing of graphene inks for wearable electronic applications[C]// NIP & Digital Fabrication Conference. USA: Society for Imaging Science and Technology, 2016: 480-481.
[47] CAI Le, ZHANG Suoming, MIAO Jinshui, et al. Fully printed stretchable thin-film transistors and inte-grated logic circuits[J]. ACS Nano, 2016, 10(12): 11459-11468.
[48] ZHANG M C, ZHAO M Y, JIAN M Q, et al. Printable smart pattern for multifunctional energy-management e-textile[J]. Matter, 2019, 1(1): 168-179.
[49] 崔铮. 柔性混合电子:基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
CUI Zheng. Flexible hybrid electronics: flexible electronics manufacturing based on printing pro-cessing[J]. Materials Reports, 2020, 34(1): 1009-1013.
[50] 周龙健. 基于多材料3D打印柔性混合电子一体化制造关键技术研究及装备开发[D]. 青岛: 青岛理工大学, 2021: 30-63.
ZHOU Longjian. Research on key technologies and equipment development of flexible hybrid electronic integrated manufacturing based on multi-material 3D printing[D]. Qingdao: Qingdao University of Technology, 2021: 30-63.
[51] 赵道焱. 面向人体心电与加速度信号监测的柔性混合电子系统[D]. 武汉: 华中科技大学, 2021: 35-59.
ZHAO Daoyan. Flexible hybrid electronic system for human ECG and acceleration signal monitoring[D]. Wuhan: Huazhong University of Science and Technology, 2021: 35-59.
[52] 陈兆润, 黄显. 柔性混合电路的柔性优化方法研究及应用[J]. 电子测量与仪器学报, 2023, 37(10): 74-79.
CHEN Zhaorun, HUANG Xian. Research and application of flexible optimization method for flexible hybrid circuits[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(10): 74-79.
[53] 2025年全球柔版印刷市场规模将达到1810亿美元[J]. 造纸装备及材料, 2020, 49(6): 2.
The global flexographic printing market will reach US$181 billion in 2025[J]. Papermaking Equipment and Materials, 2020, 49(6): 2.
[1] 崔铮, 王展. 柔性印刷电子技术解析及发展趋势[J]. 集成电路应用, 2019, 36(2): 26-29.
CUI Zheng, WANG Zhan. Analysis and development trend of flexible printed electronic technology[J]. Integrated Circuit Application, 2019, 36(2): 26-29.
[2] POST E R, ORTH M, RUSSO P R, et al. E-broidery: design and fabrication of textile-based computing[J]. IBM Systems Journal, 2000, 39(3/4): 840-860.
[3] MARCULESCU D, MARCULESCU R, ZAMORA H N, et al. Electronic textiles: a platform for pervasive computing[J]. Proceedings of the IEEE, 2003, 91(12): 1995-2018.
[4] WINTERHALTER C, TEVEROVSKY J, WILSON P, et al. Development of electronic textiles for U.S. military protective clothing systems[J]. Studies in Health Technology and Informatics, 2004, 108:194-198.
pmid: 15718646
[5] LABRUNE J. Textile Électronique retour sur dix annÉes d'expÉrimentation[J]. Techniques and Culture, 2017, 67: 134-149.
[6] 马飞祥, 丁晨, 凌忠文, 等. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
MA Feixiang, DING Chen, LING Zhongwen, et al. Research progress on preparation methods and applications of conductive fabrics[J]. Materials Reports, 2020, 34(1): 1114-1125.
[7] 王航, 王冰心, 宁新, 等. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(6): 189-197.
WANG Hang, WANG Bingxin, NING Xin, et al. Research progress on inkjet printing conductive ink and its intelligent electronic textiles[J]. Journal of Textile Research, 2021, 42(6): 189-197.
[8] 王丹丹, 沈庆绪. 纳米银导电油墨及其在柔性印刷电子中的应用[J]. 包装工程, 2024, 45(5): 18-27.
WANG Dandan, SHEN Qingxu. Silver nano-conductive inks and their applications in flexible printed electro-nics[J]. Journal of Packaging Engineering, 2024, 45(5): 18-27.
[9] 杨凡凡. 银纳米材料的合成及在喷墨印刷电子领域应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 20-34.
YANG Fanfan. Synthesis of silver nanomaterials and their application in the field of inkjet printed electro-nics[D]. Harbin: Harbin Institute of Technology, 2021: 20-34.
[10] 李奇昆. 基于纳米结构的高性能柔性电子器件的研究[D]. 大连: 大连理工大学, 2021: 52-111.
LI Qikun. Research on high-performance flexible electronic devices based on nanostructures[D]. Dalian: Dalian University of Technology, 2021: 52-111.
[11] 段晓康. 基于光烧结工艺的Cu@Ag NWs微纳连接及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2022: 1-2.
DUAN Xiaokang. Micro-nano connection and mechanism of Cu@Ag NWs based on photosintering process[D]. Harbin: Harbin Institute of Technology, 2022: 1-2.
[12] 李文博, 王旭东, 宋延林. 石墨烯基墨水的制备及其在印刷电子中的应用[J]. 科技导报, 2017, 35(17): 30-36.
doi: 10.3981/j.issn.1000-7857.2017.17.003
LI Wenbo, WANG Xudong, SONG Yanlin. Preparation of graphene-based ink and its application in printed electronics[J]. Science & Technology Review, 2017, 35(17): 30-36.
[13] 蔡亚果. 纳米银材料的制备及其在柔性印刷电子中的应用[D]. 上海: 华东师范大学, 2019: 96-122.
CAI Yaguo. Preparation of silver nanomaterials and their application in flexible printed electronics[D]. Shanghai: East China Normal University, 2019: 96-122.
[14] 曾维. 基于丝网印刷技术的柔性导电薄膜的制备及其性能研究[D]. 成都: 电子科技大学, 2020: 9.
ZENG Wei. Preparation and performance of flexible conductive films based on screen printing techno-logy[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 9.
[15] CHEN S, CUI Z L, WANG H Z, et al. Liquid metal flexible electronics: past, present, and future[J]. Applied Physics Reviews, 2023, 10(2): 1-36.
[16] WANG X L, LIU J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications[J]. Micromachines 2016, 7(12): 1-24.
[17] 倪秀雯, 乔圣林, 陈克正. MXene/F127直写式导电墨水及其在电子皮肤传感器中的应用[J]. 青岛科技大学学报(自然科学版), 2023, 44(6): 63-69.
NI Xiuwen, Qiao Shenglin, CHEN Kezheng. MXene/F127 direct-writing conductive ink and its application in electronic skin sensor[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(6): 63-69.
[18] 曲一飞, 王琪, 戴红旗. 用于柔性印刷电子中的石墨烯及其复合材料油墨的研究进展[J]. 功能材料, 2020, 51(11): 11031-11041.
doi: 10.3969/j.issn.1001-9731.2020.11.005
QU Yifei, WANG Qi, DAI Hongqi. Research progress on graphene and its composite inks for flexible printed electronics[J]. Journal of Functional Materials, 2020, 51(11): 11031-11041.
doi: 10.3969/j.issn.1001-9731.2020.11.005
[19] 梁程, 李一田, 李万里, 等. 等离子体诱导铜油墨低温固化工艺及性能优化[J]. 包装工程, 2022, 43(19): 68-75.
LIANG Cheng, LI Yitian, LI Wanli, et al. Plasma-induced low-temperature curing process and performance optimization of copper ink[J]. Packaging Engineering, 2022, 43(19): 68-75.
[20] SHI S H, JIANG Y H, REN H, et al. 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics[J]. Nano-Micro Lett, 2024, 16: 1-15.
[21] WAGHOLIKAR S, MULAY P, MULAY P, et al. Nanomaterials used in flexible electronics: recent trends and future approaches[J]. Recent Patents on Engineering, 2024, 18(6): 27-38.
[22] 付文亭, 陈锦新. 适用于多种印刷方式的环保型光变油墨配方[J]. 包装学报, 2017, 9(6): 63-67.
FU Wenting, CHEN Jinxin. Environmentally friendly photovariable ink formulations for a wide range of printing methods[J]. Journal of Packaging Science, 2017, 9(6): 63-67.
[23] 宁洪龙, 陶瑞强, 姚日晖, 等. 绿色柔性喷墨打印银纳米墨水研究综述[J]. 材料导报, 2018, 32(17): 2959-2968.
NING Honglong, TAO Ruiqiang, YAO Rihui, et al. A review of green flexible inkjet printing silver nano-inks[J]. Materials Reports, 2018, 32(17): 2959-2968.
[24] IALAM M R, AFROJ S, YIN J Y, et al. Advances in printed electronic textiles[J]. Advanced Science, 2024, 11(6): 1-50.
[25] WU W. Inorganic nanomaterials for printed electronics: a review[J]. Nanoscale, 2017, 9(22): 7342-7372.
doi: 10.1039/c7nr01604b pmid: 28548146
[26] 江唯, 张淑洁, 张丽, 等. 电子纺织品制备用丝网印刷技术的研究进展[J]. 棉纺织技术, 2024, 52(5): 8-14.
JIANG Wei, ZHANG Shujie, ZHANG Li, et al. Research progress on screen printing technology for preparation of electronic textiles[J]. Cotton Textile Technology, 2024, 52(5): 8-14.
[27] 黄燕. 柔版印水性UV活性功能油墨的制备技术研究[D]. 成都: 电子科技大学, 2022: 3.
HUANG Yan. Research on preparation technology of water-based UV active functional ink for flexographic printing[D]. Chengdu: University of Electronic Science and Technology of China, 2022: 3.
[28] 葛青涛, 吴国良, 张婕. 基于水性导电碳浆和介电油墨PVP凹版印刷柔性电容器[J]. 微纳电子技术, 2023, 60(6): 939-947.
GE Qingtao, WU Guoliang, ZHANG Jie. PVP gravure printing flexible capacitors based on water-based conductive carbon paste and dielectric ink[J]. Micro/Nano Electronics, 2023, 60(6): 939-947.
[29] 车文春, 周炳松, 於金华, 等. 柔版胶版组合印刷机[DB/OL]. 2018-12-15. https://kns.cnki.net/kcms2/article/abstract?v=kz9ikNiCkdoBl6NI0FiEVPhhi_p5td23Q1ihggnwCjdccZTbeP2MVcSQVyRlnsbukUW2ThQz4iQC_5unXgutB6Lovks8ua8lERfO3i1MKWOYGNiP4ZqXhBvyjGB0RVx-tntfJUoG3bUnqco4bYbRpunf2W63fxSjeTBhy9ZdWd7pAR2cHEQpfsx96kqiGXPo&uniplatform=NZKPT&language=CHS.
CHE Wenchun, ZHOU Bingsong, YU Jinhua, et al. Flexo-graphic offset combination printing machine[DB/OL]. Wenzhou: Zhejiang Weigang Machinery Co., Ltd., 2018-12-15. https://kns.cnki.net/kcms2/article/abstract?v=kz9ikNiCkdoBl6NI0FiEVPhhi_p5td23Q1ihggnwCjdccZTbeP2MVcSQVyRlnsbukUW2ThQz4iQC_5unXgutB6Lovks8ua8lERfO3i1MKWOYGNiP4ZqXhBvyjGB0RVx-tntfJUoG3bUnqco4bYbRpunf2W63fxSjeTBhy9ZdWd7pAR2cHEQpfsx96kqiGXPo&uniplatform=NZKPT&language=CHS.
[30] 曹金苏. 圆网印刷的特点及应用[J]. 印刷技术, 2008(12): 63-64.
CAO Jinsu. Characteristics and application of rotary screen printing[J]. Printing Technology, 2008(12): 63-64.
[31] 段树铭, 任晓辰, 张小涛, 等. 丝网印刷柔性电子器件[J]. 化学进展, 2018, 30(4): 429-438.
doi: 10.7536/PC171015
DUAN Shuming, REN Xiaochen, ZHANG Xiaotao, et al. Screen printing flexible electronic devices[J]. Progress in Chemistry, 2018, 30(4): 429-438.
doi: 10.7536/PC171015
[32] 桂佳濠. 基于丝网印刷工艺的柔性压力/应力传感器的制备及研究[D]. 南京: 南京邮电大学, 2023: 36-44.
GUI Jiahao. Preparation and study of flexible pressure/stress sensor based on screen printing process[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023: 36-44.
[33] 郭倩莹, 王晓, 吴佳糠, 等. 基于丝网印刷的柔性湿度传感器研究[J]. 传感技术学报, 2022, 35(12): 1619-1625.
GUO Qianying, WANG Xiao, WU Jiakang, et al. Research on flexible humidity sensor based on silk screen printing[J]. Journal of Sensing Technology, 2022, 35(12): 1619-1625.
[34] 陈平. 基于丝网印刷技术的生物传感器的研究[D]. 长沙: 中南大学, 2013: 70-87.
CHEN Ping. Research on biosensors based on screen printing technology[D]. Changsha: Central South University, 2013: 70-87.
[35] 李思雨. 基于丝网印刷的柔性电容式双模感知传感器阵列[D]. 西安: 西安电子科技大学, 2021: 23-40.
LI Siyu. Flexible capacitive dual-mode sensing sensor array based on screen printing[D]. Xi'an: Xidian University, 2021: 23-40.
[36] 姜宇琛, 张月, 茶兴增, 等. 基于多层丝网印刷柔性生物电干电极的单导联心电胸带[J]. 中国生物医学工程学报, 2023, 42(5): 636-640.
JIANG Yuchen, ZHANG Yue, CHA Xingzeng, et al. Single-lead ECG chest belt based on multilayer screen-printed flexible bioelectric stem electrode[J]. Chinese Journal of Biomedical Engineering, 2023, 42(5): 636-640.
[37] 方纾. 丝网印刷感温加热织物的性能及热场理论研究与仿真[D]. 天津: 天津工业大学, 2021: 129-137.
FANG Shu. Theoretical research and simulation of performance and thermal field of screen printing temperature heating fabrics[D]. Tianjin: Tiangong University, 2021: 129-137.
[38] 尹周平, 黄永安, 布宁斌, 等. 柔性电子喷印制造:材料、工艺和设备[J]. 科学通报, 2010, 55(25): 2487-2509.
YIN Zhouping, HUANG Yong'an, BU Ningbin, et al. Flexible electronic jet printing manufacturing: materials, processes and equipment[J]. Chinese Science Bulletin, 2010, 55(25): 2487-2509.
[39] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(7): 565-575.
doi: 10.6023/A16030156
QIAN Xin, SU Meng, LI Fengyu, et al. Research progress of flexible wearable electronic sensors[J]. Acta Chimica Sinica, 2016, 74(7): 565-575.
[40] 程涛. 柔性电极的可印刷制备、功能调控及应用研究[D]. 南京: 南京邮电大学, 2018: 34-45.
CHENG Tao. Printable fabrication, functional control and application of flexible electrode[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018: 34-45.
[41] 罗毅辉, 彭倩倩, 朱宇超, 等. 喷印柔性压力传感器试验研究[J]. 机械工程学报, 2019, 55(11): 90-97.
doi: 10.3901/JME.2019.11.090
LUO Yihui, PENG Qianqian, ZHU Yuchao, et al. Experimental study on jet-printed flexible pressure sensor[J]. Journal of Mechanical Engineering, 2019, 55(11): 90-97.
doi: 10.3901/JME.2019.11.090
[1] ZHANG Zhe, WANG Rui, CAI Tao. Efficient and economical preparation of patterned durable waterborne polyurethane/carbon nanotube multifunctional antistatic composite fabrics [J]. Journal of Textile Research, 2025, 46(02): 207-217.
[2] LU Hui, CAI Qinze, ZHANG Guoqing, ZHOU Lan, LIU Guojin, SHAO Min. Preparation of multi-colorant photochromic microcapsules and their photochromic properties in fabrics [J]. Journal of Textile Research, 2025, 46(01): 111-118.
[3] CHEN Kun, XU Jingying, ZHENG Yiqian, LI Jialin, HONG Xinghua. Conductivity and electrical heating properties of reduced graphene oxide modified silk fabric by screen printing [J]. Journal of Textile Research, 2024, 45(03): 122-128.
[4] HU Anzhong, WANG Chengcheng, ZHONG Ziheng, ZHANG Liping, FU Shaohai. Preparation and properties of fast response thermochromic textiles doped with boron nitride nanosheets [J]. Journal of Textile Research, 2023, 44(05): 164-170.
[5] SU Jing, GUAN Yu, FU Shaohai. Preparation and inkjet printing smoothness of monodisperse polystyrene and poly (styrene-co-styrene sulfonate) latex particles [J]. Journal of Textile Research, 2023, 44(05): 13-20.
[6] TANG Liqin, LI Yan, MAO Jifu, WANG Jun, WANG Lu. Research progress in wearable electrochemical sensor for sweat detection [J]. Journal of Textile Research, 2023, 44(03): 221-230.
[7] WANG Shudong, MA Qian, WANG Ke, GU Yuanhui. Research progress in tissue engineering scaffolds by 3D bioprinting [J]. Journal of Textile Research, 2023, 44(03): 210-220.
[8] LI Xiaoyan, ZHANG Zhihui, YAO Jiming. Research progress in flexible micro supercapacitor based on printing technology [J]. Journal of Textile Research, 2022, 43(12): 197-202.
[9] QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132.
[10] ZHANG Xingyue, HAN Pengshuai, WANG Yimeng, ZHANG Yunxiao, ZHOU Lan, LIU Guojin. Construction of highly stable photonic crystals on textile substrates with asymmetric wetting characteristics [J]. Journal of Textile Research, 2022, 43(08): 88-94.
[11] HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116.
[12] WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197.
[13] SHEN Ruichao, CHI Xinfu, SUN Yize. Redundant actuation control strategy of positioning platform for 3-D additive printing machine [J]. Journal of Textile Research, 2020, 41(10): 164-169.
[14] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[15] AN Fangfang, FANG Kuanjun, LIU Xiuming, CAI Yuqing, HAN Shuang, YANG Haizhen. Effect of wool fabric protease modification on droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(06): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!