Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 9-18.doi: 10.13475/j.fzxb.20250302801

• Fiber Materials • Previous Articles     Next Articles

Influence of metal chlorides on hydrogen bonding regulation and mechanical properties of polyamide 66

WANG Hanwen, LI Wanxin, LI Chen, YU Linjie, WANG Wenqing, DONG Zhenfeng, WEI Jianfei, ZHU Zhiguo(), WANG Rui   

  1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2025-03-14 Revised:2025-08-11 Online:2025-11-15 Published:2025-11-15
  • Contact: ZHU Zhiguo E-mail:clyzzg@bift.edu.cn

Abstract:

Objective Polyamide 66 (PA66) is widely applied in various fields due to its excellent mechanical strength, high toughness, and wear resistance. However, the high-density hydrogen bonds interaction between amide groups hinders its high level drafting, putting limits on the preparation of PA66 materials (especially fiber) with high mechanical strength. Metal chlorides can temporarily shield hydrogen bonds through complexation, thereby enhancing the stretchability of PA66. Subsequent decomplexation by water restores hydrogen bonds. Therefore, the complexation-stretching-decomplexation is a potential approach for preparing high strength PA66 fiber. This research aims to investigate the effects of CaCl2 and LaCl3, either individually or in combination, on hydrogen bonding interaction. Through shielding and restoration of hydrogen bonds, the mechanical properties of PA66 fibers were analyzed, providing an effective approach for preparing high performance PA66 fibers.
Method PA66/chloride composites with varying metal chloride contents were prepared through solution blending method. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to investigate the regulation of hydrogen and its effects on PA66 crystallization properties. Based on these results, fibrous samples were fabricated by melt stretching method and subjected to mechanical property tests so as to analyze the effect of chloride-induced hydrogen bond shielding on properties. Finally, highly oriented samples obtained by stretching on tensile machine underwent decomplexation treatment to investigate the changes in fiber mechanical properties after hydrogen bond restoration.
Results CaCl2 and LaCl3, either individually or in combination, were found efficient in shielding the hydrogen bond interaction of PA66, leading to a significant decline or almost disappearance of the crystallization ability of PA66/chloride. The hydrogen bond shielding ability was found to follow the order of PA66-La/Ca > PA66-La > PA66-Ca, indicating a synergistic shielding effect when metal chlorides were loaded in combination. In terms of mechanical properties, metal chlorides significantly enhanced the stretchability of PA66 samples. The elongation at break of PA66-5La/Ca and PA66-10La/Ca increased remarkably, both exceeding 200%, which is 2-3 times that of pure PA66. The stress induced effect significantly increased the orientation degree of the samples and resulted in a transition from the α form to γ form. After 4-6 hours of water chelation treatment, the tensile strength of the samples with tensile orientation (but not broken) was increased to about 1.70 times its original strength due to the dual effects of high orientation and hydrogen bond recovery.
Conclusion CaCl2 and LaCl3 serve as effective complexing agents to shield hydrogen bond interaction in PA66, and both chlorides exhibit a synergistic effect in hydrogen bond shielding. This shielding demonstrates reversibility and adjustability. This method provides a simple approach for obtaining PA66 fiber products with high draw ratio and high strength.

Key words: polyamide 66, polyamide fiber, metal chloride, hydrogen bonding, mechanical property, decomplexation

CLC Number: 

  • TQ317.9

Fig.1

Heating and cooling DSC curves of PA66 and PA66/chlorides"

Tab.1

Transition temperatures and relative crystallinities of PA66 and PA66/chlorides"

样品名称 第1次降温过程 第2次升温过程 Xc,DSC/
%
Tc/℃ ΔHc/
(J·g-1)
Tm/℃ ΔHm/
(J·g-1)
PA66 231 60.24 261 88.52 47.0
PA66-5Ca 227 47.16 255 82.61 43.8
PA66-10Ca 224 52.63 250 76.68 40.7
PA66-20Ca 213 36.18 246 67.07 35.6
PA66-30Ca 202 9.63 234 41.26 21.9
PA66-5La 223 46.64 252 79.61 42.3
PA66-10La 219 45.97 247 74.92 39.8
PA66-20La 208 32.41 242 64.43 34.2
PA66-30La 196 5.23 229 38.43 20.4
PA66-5La/Ca 215 34.60 244 61.94 32.8
PA66-10La/Ca 204 28.50 236 49.54 26.3
PA66-20La/Ca 227 18.73 9.9
PA66-30La/Ca 212 7.26 3.9

Fig.2

XRD patterns of PA66 and PA66/chlorides"

Fig.3

FT-IR spectra of PA66 and PA66/chlorides. (a) FT-IR spectra of PA66-nCa;(b) FT-IR spectra of PA66-nLa;(c) FT-IR spectra of PA66-nLa/Ca;(d) Absorption spectra of amide A band"

Fig.4

FT-IR spectra of PA66 and PA66/chloride after decomplexation treatment"

Fig.5

Photos of fibrous sample and its state on tensile instrument"

Fig.6

Tensile stress-strain curves of PA66 and PA66/chlorides"

Tab.2

Mechanical properties of PA66 and PA66/chlorides"

样品名称 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
PA66 71.8±2.8 826.4±54.4 106.4±2.7
PA66-5Ca 69.4±4.0 723.3±26.8 143.4±17.8
PA66-10Ca 60.8±7.6 599.2±37.9 166.1±6.4
PA66-20Ca 53.8±3.5 507.3±19.1 171.5±2.4
PA66-30Ca 39.1±5.5 436.8±44.7 98.6±5.7
PA66-5La 66.5±5.7 684.2±44.5 157.2±10.6
PA66-10La 58.0±7.3 577.2±37.6 197.9±6.7
PA66-20La 51.3±5.8 483.8±23.4 185.4±15.4
PA66-30La 38.4±3.9 414.0±29.0 103.3±8.7
PA66-5La/Ca 60.5±3.9 602.9±27.6 201.6±17.2
PA66-10La/Ca 47.4±1.9 450.5±24.2 284.4±13.6
PA66-20La/Ca 36.2±4.2 356.4±15.5 152.5±10.9
PA66-30La/Ca 28.9±5.4 239.7±20.7 35.2±3.7

Tab.3

Changes in tensile strength after decomplexation for orientation area samples (neck portion) of PA66-5La/Ca and PA66-10La/Ca"

解络合
时间/h
PA66-5La/Ca PA66-10La/Ca
拉伸强度/MPa 增强倍数 拉伸强度/MPa 增强倍数
0 60.5±3.9 1.00 47.4±1.9 1.00
2 68.9±3.4 1.13 63.5±3.9 1.34
4 75.7±4.6 1.25 80.6±5.1 1.70
6 74.1±2.9 1.22 81.6±4.4 1.72
8 62.4±2.5 1.03 61.4±4.3 1.30
10 58.4±3.8 0.97 49.5±4.0 1.05
12 55.8±2.5 0.92 41.1±5.1 0.87

Fig.7

Two-dimensional XRD patterns (a), azimuth diffraction pattern (b) and one-dimensional curves (c)of PA66-10La/Ca fibrous samples"

Tab.4

Related parameters for orientation testing of PA66-10La/Ca fibrous samples"

样品名称 峰1
角度
α1/
(°)
峰2
角度
α2/
(°)
半高宽
F/(°)
取向因子
R
Xc,XRD/
%
PA66-10La/Ca
(未拉伸样品)
20.5 22.5 21.2
PA66-10La/Ca
(细颈样品)
21.1 23.63 0.868 7 23.4
PA66-10La/Ca
(解络合样品)
20.5 23.8 36.20 0.798 9 34.7
[1] 王红, 楚久英. 芳香族聚酰胺纤维研究进展及应用[J]. 国际纺织导报, 2020, 48(4): 4, 6, 9.
WANG Hong, CHU Jiuying. Research progress and application of aromatic polyamide fiber[J]. Melliand China, 2020, 48(4): 4, 6, 9.
[2] 陈美玉, 来悦, 孙润军, 等. 生物基聚酰胺56纤维的结晶行为[J]. 纺织学报, 2017, 38(12): 7-13.
doi: 10.13475/j.fzxb.20170305807
CHEN Meiyu, LAI Yue, SUN Runjun, et al. Crystallization behavior of bio-based polyamide 56 fibers[J]. Journal of Textile Research, 2017, 38(12): 7-13.
doi: 10.13475/j.fzxb.20170305807
[3] 宋明, 张华, 陈欣, 等. 基于链间氢键调控实现高倍拉伸制备CoPA 6/66高强纤维的研究[J]. 合成纤维工业, 2022, 45(3): 11-16.
SONG Ming, ZHANG Hua, CHEN Xin, et al. Preparation of high-strength CoPA 6/66 fiber by super-drawing based on interchain hydrogen bond regula-tion[J]. China Synthetic Fiber Industry, 2022, 45(3): 11-16.
[4] 尹佳伦, 马小鹏, 姚丽菲, 等. 尼龙66工业长丝的纺丝工艺及关键影响因素探究[J]. 化工新型材料, 2024, 52(10): 243-247, 252.
doi: 10.19817/j.cnki.issn1006-3536.2024.10.036
YIN Jialun, MA Xiaopeng, YAO Lifei, et al. Exploration of spinning process and key influencing factors of nylon 66 industrial filament[J]. New Chemical Materials, 2024, 52(10): 243-247, 252.
doi: 10.19817/j.cnki.issn1006-3536.2024.10.036
[5] WANG Z C, SONG M, LI X L, et al. Copolymerization-regulated hydrogen bonds: a new routine for high-strength copolyamide 6/66 fibers[J]. Polymers, 2022, 14(17): 3517.
doi: 10.3390/polym14173517
[6] DAI L X, YING L N. Infrared spectroscopic investigation of hydrogen bonding in EVOH containing PVA fibers[J]. Macromolecular Materials and Engineering, 2002, 287(8): 509-514.
doi: 10.1002/1439-2054(20020801)287:8<>1.0.CO;2-3
[7] MURTHY N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(13): 1763-1782.
doi: 10.1002/polb.v44:13
[8] BHAT G. Structure and properties of high-performance fibers[M]. Cambridge: Elsevier Ltd, 2016:1-4.
[9] FAN W X, WANG C K, TSAI C C, et al. Ultradrawing properties of ultrahigh molecular weight polyethylenes/functionalized activated nanocarbon as-prepared fibers[J]. RSC Advances, 2016, 6(4): 3165-3175.
doi: 10.1039/C5RA20982J
[10] VASANTHAN N, KOTEK R, JUNG D W, et al. Lewis acid-base complexation of polyamide 66 to control hydrogen bonding, extensibility and crystallinity[J]. Polymer, 2004, 45(12): 4077-4085.
doi: 10.1016/j.polymer.2004.03.074
[11] 李传斌, 陈巍, 程德康, 等. PA66聚集态结构转变的研究[J]. 塑料工业, 2018, 46(6): 23-27.
LI Chuanbin, CHEN Wei, CHENG Dekang, et al. Study on the aggregation structure transition of poly-amide 66[J]. China Plastics Industry, 2018, 46(6):23-27.
[12] ZHANG H M, SHI C M, HE M M, et al. Structure and property changes of polyamide 6 during the gel-spinning process[J]. Journal of Applied Polymer Science, 2013, 130(6): 4449-4456.
doi: 10.1002/app.v130.6
[13] 鲁圣军, 甘华华, 何敏, 等. PA6/CaCl2复合材料络合配位的红外研究[J]. 塑料工业, 2012, 40(5): 65-67, 77.
LU Shengjun, GAN Huahua, HE Min, et al. FTIR study on the complexation of the PA6/CaCl2 compo-sites[J]. China Plastics Industry, 2012, 40(5): 65-67, 77.
[14] YANG Z K, YIN H H, LI X N, et al. Study on dry spinning and structure of low mole ratio complex of calcium chloride-polyamide 6[J]. Journal of Applied Polymer Science, 2010, 118(4): 1996-2004.
doi: 10.1002/app.v118:4
[15] 孙文秀, 胡先波, 徐怡庄, 等. 聚酰胺与稀土离子相互作用的研究[J]. 化学学报, 2000, 58(12): 1602-1607.
SUN Wenxiu, HU Xianbo, XU Yizhuang, et al. Study on the interaction between polyamide and lanthanide ions[J]. Acta Chimica Sinica, 2000, 58(12): 1602-1607.
[16] 姜超, 安晶晶, 彭中梁, 等. 金属离子与聚酰胺相互作用的研究进展[J]. 塑料, 2016, 45(4): 81-84, 112.
JIANG Chao, AN Jingjing, PENG Zhongliang, et al. Research progress on the interaction between metal ions and polyamide[J]. Plastics, 2016, 45(4): 81-84, 112.
[17] 智海辉, 张龙, 郑今欢. 聚酰胺湿法涂层浆的制备机制及其成膜性能[J]. 纺织学报, 2015, 36(9): 65-69.
ZHI Haihui, ZHANG Long, ZHENG Jinhuan. Preparation mechanism and membrane properties of polyamide wet coating[J]. Journal of Textile Research, 2015, 36(9): 65-69.
doi: 10.1177/004051756603600108
[18] FORD R A, MARSHALL H S B. Some group IV tetrahalide-alcohol complexes as solvents for poly-amides[J]. Journal of Polymer Science, 1956, 22(101): 350-352.
doi: 10.1002/pol.12.v22:101
[19] MILLOT C, FILLOT L A, LAME O, et al. Assessment of polyamide-6 crystallinity by DSC[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(1): 307-314.
doi: 10.1007/s10973-015-4670-5
[20] LAYACHI A, FRIHI D, SATHA H, et al. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(3): 1319-1329.
doi: 10.1007/s10973-016-5286-0
[21] SUN B H. Study on the mechanism of nylon 6,6 dissolving process using CaCl2/MeOH as the solvent[J]. Chinese Journal of Polymer Science, 1994(1):57-65.
[22] 吴博, 谢晓琼, 李卫领, 等. 利用裂解气相色谱-质谱法研究PA66/PA6合金的定性定量分析[J]. 塑料工业, 2021, 49(7):94-98,10.
WU Bo, XIE Xiaoqiong, LI Weiling, et al. Study on Analysis of PA66/PA6 alloy by pyrolysis gas chromatography-mass spectrometry[J]. China Plastics Industry, 2021, 49(7):94-98,10.
[23] WEI M, DAVIS W, URBAN B, et al. Manipulation of nylon-6 crystal structures with its α-cyclodextrin inclusion complex[J]. Macromolecules, 2002, 35(21): 8039-8044.
doi: 10.1021/ma020765m
[24] MA Y N, ZHOU T, SU G H, et al. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy[J]. RSC Advances, 2016, 6(90): 87405-87415.
doi: 10.1039/C6RA09611E
[25] VALENTI B, BIANCHI E, TEALDI A, et al. Bulk properties of synthetic polymer-inorganic salt systems. IV. role of the polymeric substrate[J]. Macromolecules, 1976, 9(1): 117-122.
doi: 10.1021/ma60049a023
[1] GU Qihui, YANG Zhiqian, WANG Hailou, WEI Fayun, ZHANG Wei. Preparation of woven spacer fabric reinforced cementitious composites and its mechanical properties [J]. Journal of Textile Research, 2025, 46(10): 120-128.
[2] LI Jian'ge, WU Wei, HAN Weipeng, JI Bolin, XU Hong, MAO Zhiping. Synthesis of new ethylene sulfone acetate reactive disperse dyes and its dyeing performance for polyamide 66 fabrics [J]. Journal of Textile Research, 2025, 46(10): 143-151.
[3] GAO Min, CHENG Chunzu, XU Zhongkai, ZHAO Qingbo, ZHANG Dong, DAI Xinxin. Preparation and properties of Lyocell fiber with silicon-containing modified phosphorus-nitrogen flame retardant [J]. Journal of Textile Research, 2025, 46(10): 19-29.
[4] HOU Yinghui, LIU Xiaoyan, LIU Dongchen, HAO Kuangrong, ZOU Ting. Multi-objective optimization of ureteral stent tubes based on in vitro degradation [J]. Journal of Textile Research, 2025, 46(09): 154-162.
[5] GAO Wenyu, CHEN Cheng, XI Xiaowei, DENG Linhong, LIU Yang. Preparation and properties of collagen-based corneal repair materials reinforced with modified silk protein fibers [J]. Journal of Textile Research, 2025, 46(08): 1-9.
[6] LIANG Feng, FANG Yan, ZHANG Weihua, TANG Yuling, LI Shuangyang, ZHOU Jianfei, SHI Bi. Preparation and mechanical properties of collagen-based fibers employing metal-polyphenol networks [J]. Journal of Textile Research, 2025, 46(08): 10-17.
[7] CHEN Qingyu, LU Chunhong, ZHANG Bin, JIN Yikai, HUANG Qiwei, WANG Chao, DING Bin, YU Jianyong, WANG Xianfeng. Preparation and performance study of carbon fiber reinforced cement-based grouting material [J]. Journal of Textile Research, 2025, 46(08): 120-126.
[8] MA Chaohui, CUI Tongran, BING Linhan, ZHU Zhiguo, WANG Rui, WEI Jianfei. Optimization of preparation technology for polyethylene terephthalate-based carbom dots and its application in polyamide 66 [J]. Journal of Textile Research, 2025, 46(08): 28-36.
[9] YUE Hang, LU Chao, WANG Chunhong, LI Hanyu. Method for tensile strength prediction of bast fibers [J]. Journal of Textile Research, 2025, 46(08): 62-70.
[10] ZHU Lei, LI Xiaojun, CHENG Chunzu, XU Jigang, DU Xinyu. Influences of sodium tetraborate/tannic acid cross-linking on structure and properties of calcium alginate fibers [J]. Journal of Textile Research, 2025, 46(07): 28-36.
[11] LIU Yuxiang, WU Jing, XU Jinlong, XIE Ruimin, WANG Huaping. Preparation and properties of cationic dyeable poly(propylene terephthalate) pre-oriented yarns [J]. Journal of Textile Research, 2025, 46(07): 46-52.
[12] CHEN Yajuan, GUO Hanyu, ZHANG Chentian, LI Xinxin, ZHANG Xueping. Preparation and hygroscopic properties of polyvinyl alcohol/sodium alginate/polyamide 66 composite hydrogel core-spun yarns [J]. Journal of Textile Research, 2025, 46(06): 103-110.
[13] TENG Yanfei, WAN Ailan. Development and properties of deodorant sports socks [J]. Journal of Textile Research, 2025, 46(06): 120-126.
[14] LI Jinjian, XUE Yuan, CHEN Yourong. Design of segment colored slub yarn with time series distribution and three-channel rotor yarn forming process [J]. Journal of Textile Research, 2025, 46(03): 72-81.
[15] LU Hailong, YU Ying, ZUO Yuxin, WANG Haoran, CHEN Hongli, RU Xin. Preparation and properties of orientation reinforced CO2 corrosion resistant fiber membrane [J]. Journal of Textile Research, 2024, 45(12): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!