Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 39-48.doi: 10.13475/j.fzxb.20250601602

• Academic Salon Column for New Insight of Textile Science and Technology: Fiber-based Functional Filtration Materials • Previous Articles     Next Articles

Recent advances in fibrous separation membranes for functional modification and applications

LIU Qingqing1,2, MAO Xiaohui1, YAO Yan1, SUN Ying1, CHEN Yu1, ZHANG Xiaozhe1, ZHU Liping1,2(), WANG Xuefen1   

  1. 1. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    2. Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
  • Received:2025-06-09 Revised:2025-09-12 Online:2025-12-15 Published:2026-02-06
  • Contact: ZHU Liping E-mail:zhulp@dhu.edu.cn

Abstract:

Significance Fibrous separation membranes serve as highly efficient, low-energy separation materials characterized by a porous network structure, which affords higher porosity and specific surface area than homogeneous membranes. Consequently, it is widely used in dye adsorption, oil-water separation, protein separation, and so on. However, these fibrous separation membranes encounter bottlenecks including poor chemical corrosion resistance and insufficient antifouling properties, hindering their ability to meet diverse demands under complex operating conditions. Functional modification has become a major research thrust aiming at addressing these performance constraints. Surface chemical modification techniques - including the grafting of hydrophilic/hydrophobic groups and charge modulation - allow for precise control over the interfacial properties of the membrane. These approaches not only enhance chemical corrosion resistance but also confer superwetting characteristics and improved antifouling performance. Concurrently, surface roughness has demonstrated effectiveness in enhancing antifouling properties, separation selectivity, and flux.

Progress Functional modification of fibrous separation membranes via tailored surface chemistry and roughness significantly improves their separation efficiency, selectivity, and antifouling properties, thereby broadening their applicability. Precise adjustment of surface hydrophilicity/hydrophobicity, and charge characteristics further enhances the separation performance. Superhydrophilic modification enhances water affinity to improve anti-fouling properties through establishing a stable hydration layer utilizing hydrophilic materials such as polydopamine, tannic acid, or acrylic acid, which acts as a physical barrier to prevent pollutant adhesion. Furthermore, chemical grafting of charged functional groups (—NH2, —COOH, —SO2H) converts intrinsically non-charged systems into charged systems, enabling efficient electrostatic separation of charged species like proteins, dyes, or metal ions. Surface roughness engineering, typically implemented via techniques including electro-assisted chemical deposition, spray coating, and dip coating, involves constructing micro/nanostructures on fibrous membrane surfaces to optimize physicochemical properties and functional characteristics. For instance, controlled crystal growth on cellulose membrane surfaces creates roughness that increases hydrophobicity, facilitating effective separation of diverse oil/water mixtures. Surface roughness modification can also be realized by altering internal micro/nanostructures within the membrane. Engineering surface roughness to impart specific wettability characteristics proves crucial for developing high-performance separation materials, as this approach not only enhances separation selectivity but also effectively addresses permeability constraints to improve separation efficiency. The combined implementation of surface chemical modifications and roughness engineering further enhances the separation capabilities of fibrous membranes while introducing multifunctionality, effectively meeting diverse application requirements such as dye adsorption, oil/water separation, and protein separation.

Conclusion and Prospect This review systematically examines functional modification strategies for fibrous separation membranes. Chemical modification enables precise regulation of membrane surface hydrophilicity/hydrophobicity and charge characteristics, significantly enhancing separation performance while concurrently imparting anti-fouling functionality. As complements, surface roughness engineering confers specialized wetting properties that effectively improve anti-fouling capability, separation selectivity, and flux performance. Through methodical exploration, substantial performance enhancements have been achieved in critical application domains including dye adsorption, oil/water separation, and protein separation. The review suggests that focuses of future research should be placed on (i) the development of stimuli-responsive materials for adaptive interfaces that dynamically alter surface morphology or chemistry under external stimuli to enhance anti-fouling performance, environmental adaptability, and self-cleaning while reducing cleaning frequency and energy consumption; and (ii) integration of artificial intelligence, such as machine learning and deep learning, to predict membrane properties and optimize structure-performance relationships, enabling precise design of high-efficiency separation membranes.

Key words: fibrous separation membrane, functional modification, chemical property regulation, physical structure regulation, dye adsorption, oil-water separation, protein separation

CLC Number: 

  • TQ051.893

Fig.1

Schematic diagram of surface chemical modification strategies and preparation processes. (a) Grafting of hydrophilic acrylic acid by low-temperature plasma-induced liquid-phase grafting; (b) Loading of polyhydroxyphenolic resin by surface coating method; (c) Grafting of hydrophobic long-chain N-octadecanethiols by click chemistry; (d) Modification of glass fiber separation membrane by in-situ crosslinking method"

Fig.2

Schematic of surface roughness modification. (a) Modulation of surface roughness by altering surface structure; (b) Modulation of surface roughness by altering micro/nano structure within membrane"

Fig.3

Application and mechanism schematic of fibrous membrane in dye absorption. (a) Efficient adsorption through multiple adsorption mechanism; (b) Efficient adsorption by fibers with groove banding structure"

Fig.4

Application and mechanism schematic of fibrous membrane in oil-water separation field. (a) Separation process of water-in-oil emulsions; (b) Interaction of oil-in-water emulsions with membrane surface during separation; (c) pH/temperature responsive separation"

Tab.1

Effect of different modification methods on performance of fibrous separation membranes"

改性方式 接触角/(°) 电荷 分离效果 应用 文献
接枝 不带电→带正电 对甲基橙的吸附量为70.80 mg/g 染料吸附 [29]
共混 不带电→带负电 高效吸附孔雀石绿(735.77 mg/g)、亚甲基蓝(429.31 mg/g)
和结晶紫(607.21 mg/g)
染料吸附 [33]
接枝 137.4~5.8 分离通量由1 390 L/(m2·h)升至6 460 L/(m2·h),
分离效率>99.8%
油水分离 [16]
去模板法 122.4~0 分离通量由995 L/(m2·h)升至1 624 L/(m2·h),
分离效率>95%
油水分离 [27]
接枝 不带电→带负电 可分离BSA/溶菌酶 蛋白分离 [47]
官能化反应 不带电→带负电 有效分离BSA/Hb 蛋白分离 [48]

Fig.5

Application and mechanism schematic of fibrous membrane in protein separation. (a) Protein adsorption mechanism through electrostatic interaction; (b) Protein A/G modified membrane specific adsorption of immunoglobulin G;(c) Protein separation through size sieving"

[1] CHOI W, KWON Y, YU W R, et al. Graphite fiber electrode by continuous wet-spinning[J]. ACS Applied Energy Materials, 2022, 5(7): 8963-8972.
doi: 10.1021/acsaem.2c01446
[2] LUISO S, HENRY J J, POURDEYHIMI B, et al. Fabrication and characterization of meltblown poly(vinylidene difluoride) membranes[J]. ACS Applied Polymer Materials, 2020, 2(7): 2849-2857.
doi: 10.1021/acsapm.0c00395
[3] LIU F Y, PAN L, LIU Y F, et al. Biobased fibers from natural to synthetic: processing, manufacturing, and application[J]. Matter, 2024, 7(6): 1977-2010.
doi: 10.1016/j.matt.2024.04.006
[4] HASSAN M A, YEOM B Y, WILKIE A, et al. Fabrication of nanofiber meltblown membranes and their filtration properties[J]. Journal of Membrane Science, 2013, 427: 336-344.
doi: 10.1016/j.memsci.2012.09.050
[5] MENG Z Y, ZHU L P, WANG X F, et al. Electrospun nanofibrous composite membranes for separations[J]. Accounts of Materials Research, 2023, 4(2): 180-192.
doi: 10.1021/accountsmr.2c00219
[6] LU J L, LIU S Y, ZOU L, et al. Graphene oxide-polydopamine loaded uniform fibrous membranes via robust multi-channel microfluidic-electrospinning method[J]. Separation and Purification Technology, 2025, 357: 130014.
doi: 10.1016/j.seppur.2024.130014
[7] HIMMA N F, PRASETYA N, ANISAH S, et al. Superhydrophobic membrane: progress in preparation and its separation properties[J]. Reviews in Chemical Engineering, 2019, 35(2): 211-238.
doi: 10.1515/revce-2017-0030
[8] LUO W, CHI R Y, ZENG F K, et al. Multilayer structure ammoniated collagen fibers for fast adsorption of anionic dyes[J]. ACS Omega, 2021, 6(41): 27070-27079.
doi: 10.1021/acsomega.1c03643 pmid: 34693127
[9] ZHANG L Y, LI Y M, LIU F, et al. Nylon-6/SiO2 composite fiber membranes with 2D narrow pore but 3D fluffy structure for high-efficiency and comfortable PM0.1 filter[J]. Journal of Membrane Science, 2025, 718: 123714.
doi: 10.1016/j.memsci.2025.123714
[10] YUE X J, LI Z D, ZHANG T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309.
doi: 10.1016/j.cej.2019.01.149
[11] ALZAHRANI S O, ALQARNI S A, ALESSA H, et al. Electrospun nanofibers membrane of carbon quantum dots loaded onto chitosan-polyvinyl alcohol for removal of rhodamine B dye from aqueous solutions: adsorption isotherm, kinetics, thermodynamics and optimization via Box-Behnken design[J]. International Journal of Biological Macromolecules, 2025, 304: 140951.
doi: 10.1016/j.ijbiomac.2025.140951
[12] UPADHYAYA L, QIAN X H, RANIL WICKRAMASINGHE S. Chemical modification of membrane surface: overview[J]. Current Opinion in Chemical Engineering, 2018, 20: 13-18.
doi: 10.1016/j.coche.2018.01.002
[13] NIE Y L, ZHANG S H, HE Y, et al. One-step modification of electrospun PVDF nanofiber membranes for effective separation of oil-water emulsion[J]. New Journal of Chemistry, 2022, 46(10): 4734-4745.
doi: 10.1039/D1NJ05436H
[14] YI Y, TU H, ZHOU X, et al. Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment[J]. Journal of Hazardous Materials, 2019, 371: 165-174.
doi: S0304-3894(19)30228-6 pmid: 30849571
[15] HAO Y J, GUO X Y, LI J, et al. Polyhydroxy phenolic resin coated polyetherimide membrane with biomimetic super-hydrophily for high-efficient oil-water separa-tion[J]. Separation and Purification Technology, 2024, 336: 126278.
doi: 10.1016/j.seppur.2024.126278
[16] YUAN J J, YIN X, QIU Z L, et al. Fabricating superhydrophobic surfaces via coating amine-containing fluorinated emulsion and Michael addition reaction[J]. Journal of Coatings Technology and Research, 2022, 19(4): 1187-1198.
doi: 10.1007/s11998-021-00600-y
[17] LUO J C, HUO L Y, WANG L, et al. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance[J]. Chemical Engineering Journal, 2020, 391: 123537.
doi: 10.1016/j.cej.2019.123537
[18] ZHANG Z, ZHOU J, HOU T, et al. Centrifugally spun superhydrophobic fibrous membranes with core-sheath structure assisted by hyper branched polymer and via click chemistry for high efficiency oil-water separa-tion[J]. Separation and Purification Technology, 2024, 346: 127480.
doi: 10.1016/j.seppur.2024.127480
[19] ZHOU Y J, HE L T, WANG L X, et al. A facile and effective strategy to develop a super-hydrophobic/super-oleophilic fiberglass filter membrane for efficient micron-scale water-in-oil emulsion separation[J]. RSC Advances, 2022, 12(6): 3227-3237.
doi: 10.1039/d1ra08841f pmid: 35425375
[20] ZHANG P P, MAO H Y, ZHOU S Y, et al. Robust Fe3O4@attapulgite-intercalated carboxylated graphene oxide composite membrane for efficient and stable oil-in-water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 715: 136605.
doi: 10.1016/j.colsurfa.2025.136605
[21] HAO Y J, LIU F, GUO X Y, et al. Super-hydrophilic polyetherimide membrane with surface amino exposed for highly efficient oil-water separation[J]. Fibers and Polymers, 2024, 25(3): 817-828.
doi: 10.1007/s12221-024-00483-x
[22] ZHOU Y, WU J X, LI Y Y, et al. Fabrication of sulfated silk fibroin-based blend nanofibrous membranes for lysozyme adsorption[J]. Advanced Fiber Materials, 2022, 4(1): 89-97.
doi: 10.1007/s42765-021-00104-9
[23] SHI S, BAI W L, CHEN X Y, et al. Advances in nanofiber filtration membranes: from principles to intelligent applications[J]. Advanced Functional Materials, 2025, 35(27): 2423284.
doi: 10.1002/adfm.v35.27
[24] YUE X J, LI J X, ZHANG T, et al. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation[J]. Chemical Engineering Journal, 2017, 328: 117-123.
doi: 10.1016/j.cej.2017.07.026
[25] ABD AZIZ M H, PAUZAN M A B, MOHD HISAM N A S, et al. Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation[J]. Separation and Purification Technology, 2022, 288: 120574.
doi: 10.1016/j.seppur.2022.120574
[26] WU Z C, HAO X T, WU M Y, et al. Superhydrophilic modification of polytetrafluoroethylene (PTFE) hollow fiber membrane by a novel miniemulsion template method[J]. Journal of Membrane Science, 2025, 722: 123920.
doi: 10.1016/j.memsci.2025.123920
[27] JAAFAR A, EL-HUSSEINI S, PLATAS-IGLESIAS C, et al. Zeolitic imidazolate framework (AMCD-ZIF) functionalised membrane for the removal of dyes from water[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108019.
doi: 10.1016/j.jece.2022.108019
[28] 邱月, 杨询, 李昊, 等. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(6): 88-95.
QIU Yue, YANG Xun, LI Hao, et al. Modification of polysuccinimide nano fibrous membrane and its dye adsorption properties[J]. Journal of Textile Research, 2025, 46(6): 88-95.
[29] JUANG R S, LIU C G, FU C C. Polyaminated electrospun chitosan fibrous membranes for highly selective removal of anionic organics from aqueous solutions in continuous operation[J]. Separation and Purification Technology, 2023, 319: 124043.
doi: 10.1016/j.seppur.2023.124043
[30] FAN M, ZHANG B, FAN L, et al. Adsorbability of Modified PBS Nanofiber Membrane to Heavy Metal Ions and Dyes[J]. Journal of Polymers and the Environment, 2021, 29(9): 3029-39.
doi: 10.1007/s10924-021-02086-6
[31] LI M, LUO J W, LU J J, et al. A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treat-ment[J]. Chemosphere, 2022, 304: 135285.
doi: 10.1016/j.chemosphere.2022.135285
[32] WANG X, DONG J R, GONG C Y, et al. Bendable poly(vinylidene fluoride)/polydopamine/β-cyclodextrin composite electrospun membranes for highly efficient and bidirectional adsorption of cation and anion dyes from aqueous media[J]. Composites Science and Technology, 2022, 219: 109256.
doi: 10.1016/j.compscitech.2021.109256
[33] CHEN D Q, UNIVERSITY D, DING Z Z, et al. Fabrication of porous fibrous membranes with rough surfaces via PAN-H/PVP for cation dye removal and oil/water emulsion separation[J]. Langmuir, 2025, 41(7): 4941-4952.
doi: 10.1021/acs.langmuir.5c00049
[34] TENG D F, XU Y Q, ZHAO T N, et al. Zein adsorbents with micro/nanofibrous membrane structure for removal of oils, organic dyes, and heavy metal ions in aqueous solution[J]. Journal of Hazardous Materials, 2022, 425: 128004.
doi: 10.1016/j.jhazmat.2021.128004
[35] 张娇娇, 左晓飞, 覃小红, 等. 聚多巴胺涂覆改性聚丙烯腈纳米纤维膜及其油水分离性能[J]. 东华大学学报(自然科学版), 2018, 44(1): 10-17, 32.
ZHANG Jiaojiao, ZUO Xiaofei, QIN Xiaohong, et al. Properties of polydopamine-coated electrospun polyacylonitrile membrane in oil/water separation[J]. Journal of Donghua University (Natural Science), 2018, 44(1): 10-17, 32.
[36] 王洪杰, 王闻宇, 王赫, 等. 用于油水分离的静电纺纳米纤维膜研究进展[J]. 材料导报, 2017, 31(19): 144-151.
WANG Hongjie, WANG Wenyu, WANG He, et al. Progress in electrospun nanofibrous membranes used for oil-water separation[J]. Materials Review, 2017, 31(19): 144-151.
[37] CHENG B B, YAN S, LI Y S, et al. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation[J]. Separation and Purification Technology, 2023, 315: 123728.
doi: 10.1016/j.seppur.2023.123728
[38] SHAKIBA M, ABDOUSS M, MAZINANI S, et al. Super-hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic-assisted PANI in situ polymerization for highly efficient gravity-driven oil/water separation[J]. Separation and Purification Technology, 2023, 309: 123032.
doi: 10.1016/j.seppur.2022.123032
[39] ZHANG M J, MA W J, WU S T, et al. Electrospun frogspawn structured membrane for gravity-driven oil-water separation[J]. Journal of Colloid and Interface Science, 2019, 547: 136-144.
doi: S0021-9797(19)30405-9 pmid: 30952075
[40] CHEN Y, TANG N, ZHU W Y, et al. Biomimetic nanonet membranes with UV-driven self-cleaning performance for water remediation[J]. Journal of Membrane Science, 2023, 687: 122047.
doi: 10.1016/j.memsci.2023.122047
[41] TANG N, SI Y, YU J Y, et al. Leaf vein-inspired microfiltration membrane based on ultrathin nanonetworks[J]. Environmental Science: Nano, 2020, 7(9): 2644-2653.
doi: 10.1039/D0EN00644K
[42] FENG S Z, XU M J, LENG C Y, et al. Bio-inspired superhydrophobic fiber membrane for oil-water separation and non-destructive transport of liquids in corrosive environments[J]. Journal of Membrane Science, 2024, 705: 122852.
doi: 10.1016/j.memsci.2024.122852
[43] GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018, 28(10): 1705051.
doi: 10.1002/adfm.v28.10
[44] LIU Q Q, LI Z D, LU T Y, et al. High-density polyethylene Janus fibrous membrane with enhanced breathability and moisture permeability via PDA assisted hydrophilic modification[J]. Macromolecular Rapid Communications, 2025, 46(11): 2400854.
doi: 10.1002/marc.v46.11
[45] ZHU W Y, TANG N, JIA C, et al. A superwetting rough structured nanofibrous membrane with enhancing anti-fouling performance for oil-water separation[J]. Separation and Purification Technology, 2025, 359: 130800.
doi: 10.1016/j.seppur.2024.130800
[46] FANG X B, DU Y H, NAWAZ H, et al. Electrospun cellulose nanofibers membranes with photothermal/pH-induced switchable wettability for oil-water separation and elimination of bacteria[J]. Chemical Engineering Journal, 2025, 518: 164394.
doi: 10.1016/j.cej.2025.164394
[47] WANG X L, FU Q X, WANG X Q, et al. In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins[J]. Journal of Materials Chemistry B, 2015, 3(36): 7281-7290.
doi: 10.1039/C5TB01192B
[48] LI Y, CHUNG T S. Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation[J]. Journal of Membrane Science, 2008, 309(1/2): 45-55.
doi: 10.1016/j.memsci.2007.10.006
[49] 孙颖, 王伟杰, 姚焰, 等. 高分子材料在蛋白分离应用中的研究进展[J]. 高分子学报, 2025, 56(8): 1313-1332.
SUN Ying, WANG Weijie, YAO Yan, et al. Advances in polymer materials for protein separation applica-tions[J]. Acta Polymerica Sinica, 2025, 56(8): 1313-1332.
[50] SÃO PEDRO M N, AZEVEDO A M, AIRES-BARROS M R, et al. Minimizing the influence of fluorescent tags on IgG partition in PEG-salt aqueous two-phase systems for rapid screening applications[J]. Biotechnology Journal, 2019, 14(8): 1800640.
doi: 10.1002/biot.v14.8
[51] 校迎军, 张玉忠, 李泓. 阳离子树脂填充EVAL中空纤维膜吸附剂对牛血清/牛血红蛋白质混合物的分离性能[J]. 天津工业大学学报, 2010, 29(4): 5-9.
XIAO Yingjun, ZHANG Yuzhong, LI Hong. Separation of BSA/Hb protein mixture by cation resin filled EVAL hollow-fiber membrane adsorbents[J]. Journal of Tianjin Polytechnic University, 2010, 29(4): 5-9.
[52] JIANG Y G, LU J W, GUO L. Fabrication of highly carboxylated thermoplastic nanofibrous membranes for efficient absorption and separation of protein[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665: 131203.
doi: 10.1016/j.colsurfa.2023.131203
[53] MA Z W, LAN Z W, MATSUURA T, et al. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation[J]. Journal of Chromatography B, 2009, 877(29): 3686-3694.
doi: 10.1016/j.jchromb.2009.09.019 pmid: 19775944
[54] 陈飞勇, 刘坤, 李文祚, 等. 静电纺丝纤维材料在太阳能海水淡化领域的应用进展[J]. 材料导报, 2025, 39(14): 228-235.
CHEN Feiyong, LIU Kun, LI Wenzuo, et al. Progress of research into electrospun fibrous materials for solar-driven seawater desalination[J]. Materials Reports, 2025, 39(14): 228-235.
[55] CHEN Z C, LI Q, CHEN X M. Porous graphene/polyimide membrane with a three-dimensional architecture for rapid and efficient solar desalination via interfacial evaporation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13850-13858.
[56] AZHAR O, JAHAN Z, SHER F, et al. Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility[J]. Materials Science and Engineering: C, 2021, 126: 112127.
doi: 10.1016/j.msec.2021.112127
[57] BI G S, TANG X F, LIU X Y, et al. Sustainable APTES-modified nano-TiO2/PVA composite nanofibrous separators for thermally stable lithium-ion battery[J]. Advanced Functional Materials, 2025, n/a(n/a): 2504826.
[58] 卿星, 肖晴, 陈斌, 等. 纤维晶体管器件研究进展[J]. 纺织学报, 2024, 45(4): 33-40.
QING Xing, XIAO Qing, CHEN Bin, et al. Research progress in fiber-based transistors[J]. Journal of Textile Research, 2024, 45(4): 33-40.
[1] LIU Jinyang, LI Chengcai, ZHU Hailin, GUO Yuhai, JIANG Xueliang. Preparation and oil-water separation performance of asymmetric structure polytetrafluoroethene empty tube fiber membrane [J]. Journal of Textile Research, 2025, 46(12): 11-18.
[2] LIU Dongfang, REN Lipei, XU Weilin, XIAO Xingfang. Preparation and dye adsorption properties of activated carbon loaded Juncus effusus materials [J]. Journal of Textile Research, 2025, 46(10): 159-166.
[3] REN Tianxiang, CHEN Jiangbing, FANG Taorong, ZHAN Yingtao, HONG Yujie, XU Zhiqiang, XU Yudong, ZHAN Haihua. Research progress in preparation, modification and application of polyphenylene sulfide film [J]. Journal of Textile Research, 2025, 46(08): 245-253.
[4] WANG Wei, GAO Jiannan, PEI Xiaohan, LU Xin, SUN Yinyin, WU Jianbing. Fabrication and oil-water separation efficiency of cellulose/methyltrimethoxysilane aerogel [J]. Journal of Textile Research, 2025, 46(05): 135-142.
[5] LIN Weijia, JI Dawei, TIAN Xuyong, WANG Chunlei, XUE Haolong, XIAO Changfa. Fabrication of braided tube reinforced polypropylene hollow fiber membrane for oil-water separation [J]. Journal of Textile Research, 2025, 46(04): 38-46.
[6] JIN Rushi, CHEN Wanming, LIU Guojin, LIU Chenghai, QI Dongming, ZHAI Shimin. Application progress in biochars in printing and dyeing wastewater treatment [J]. Journal of Textile Research, 2025, 46(04): 235-243.
[7] YU Ping, WANG Haiyue, WANG Yi, SUN Qinchao, WANG Yan, HU Zuming. Hydrophobic modification and mechanism of polyester fabrics with direct fluorine modification [J]. Journal of Textile Research, 2024, 45(10): 137-144.
[8] YANG Shuo, ZHAO Pengju, CHENG Chunzu, LI Chenyang, CHENG Bowen. Preparation of composite fiber membranes with asymmetric wettability and oil-water separation performance [J]. Journal of Textile Research, 2024, 45(08): 10-17.
[9] XIAO Hao, SUN Hui, YU Bin, ZHU Xiangxiang, YANG Xiaodong. Preparation of chitosan-SiO2 aerogel/cellulose/polypropylene composite spunlaced nonwovens and adsorption dye performance [J]. Journal of Textile Research, 2024, 45(02): 179-188.
[10] WANG Yuzhou, ZHOU Mengjie, JIANG Yuanjin, CHEN Jiaben, LI Yue. Preparation and oil-water emulsion separation performance of amidoximated polyacrylonitrile nanofiber membrane [J]. Journal of Textile Research, 2023, 44(07): 42-49.
[11] XIE Ailing, YUE Yuhan, AI Xin, WANG Yahui, WANG Yirong, CHEN Xinpeng, CHEN Guoqiang, XING Tieling. Preparation of superhydrophobic polyester fabric modified by tea polyphenols for oil-water separation [J]. Journal of Textile Research, 2022, 43(02): 162-170.
[12] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[13] LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation [J]. Journal of Textile Research, 2021, 42(08): 109-114.
[14] YU Yucong, SHI Xiaolong, LIU Lin, YAO Juming. Recent progress in super wettable textiles for oil-water separation [J]. Journal of Textile Research, 2020, 41(11): 189-196.
[15] . Preparation of ultrafine polyacrylonitrile nanofibers via composite electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!