Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 26-31.doi: 10.13475/j.fzxb.20190200306

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings

WU Qianqian1,2, LI Ke1, YANG Lishuang1, FU Yijun1,2(), ZHANG Yu1,2, ZHANG Haifeng1,2   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection,Nantong University, Nantong, Jiangsu 226019, China
  • Received:2019-01-29 Revised:2019-10-24 Online:2020-01-15 Published:2020-01-14
  • Contact: FU Yijun E-mail:fyjviolin@163.com

Abstract:

With the aim of obtaining thin and soft wound dressings with excellent piezoelectric and antibacterial functions, drug-loaded (PVDF) composite nanofiber membranes were prepared by electrospinning from PVDF and enrofloxacin hydrochloride (Enro) at different mass ratios. The influence of morphology and chemical structure of the composite nanofiber membrane on its piezoelectricity, sustained release and antibacterial properties were investigated. Results show that in the situation where the mass ratio of PVDF was 8% and the average fiber diameter was(753±128) nm, the fiber membrane showed good web formation. It is revealed that the diameter of composite nanofiber increased and then decreased as the Enro mass fraction was incremented, and that the crystal structure of PVDF changed from α to β crystal phase after the process of electrospinning, leading to an excellent piezoelectric properties with a 9 mV output voltage. When the mass concentration of Enro was 15%, the drug-loaded PVDF composite nanofiber membrane exhibited a relatively stable and sustainable release and outstanding antibacterial performance. The drug-loaded PVDF composite nanofiber membrane is proven to be suitable for wound dressings.

Key words: wound dressings, polyvinylidene fluoride, enrofloxacin hydrochloride, electrospinning, piezoelectric property, antibacterial property

CLC Number: 

  • TS174.8

Fig.1

SEM images of PVDF nanofiber membranes with different mass concentrations(×5 000)"

Fig.2

SEM images of PVDF/Enro composite nanofiber membrane with different mass concentrations of Enro(×8 000)"

Fig.3

Infrared spectra of PVDF powder, Enro powder, pure PVDF nanofiber membrane and PVDF/Enro composite nanofiber membrane"

Fig.4

X-ray diffraction patterns of different fiber membranes and PVDF powders"

Fig.5

Output voltage of PVDF/Enro composite nanofiber membrane with different mass concentrations of Enro"

Fig.6

Standard curve of Enro"

Fig.7

Simulated cumulative release curve of different fiber membranes in vitro"

Fig.8

Flora density of PVDF nanofiber membrane before and after drug loading"

[1] 谷世行, 肖丽玲. 壳聚糖及其衍生物在创口敷料中的应用研究新进展[J]. 现代医学与健康研究电子杂志 2017, 1(4):151-155.
GU Shixing, XIAO Liling. New progress in the application of chitosan and its derivatives in wound dressings[J]. Modern Medicine and Health Research, 2017, 1(4):151-155.
[2] 李晶, 薛斌. 新型医用敷料的分类及特点[J]. 中国组织工程研究, 2013,17(12):2225-2232.
LI Jing, XUE Bin. Classification and characteristics of new medical dressings[J]. China Tissue Engineering Research, 2013,17(12):2225-2232.
[3] 耿志杰, 陈军, 刘群峰, 等. 伤口护理应用医用湿性敷料研究进展[J]. 护理学报, 2017,24(11):27-30.
GENG Zhijie, CHEN Jun, LIU Qunfeng, et al. Research progress in wound care application for medical wet dressings[J]. Journal of Nursing(China), 2017,24(11):27-30.
[4] FU R, CHEN S, LIN Y, et al. Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals[J]. Materials Letters, 2017(15):86-88.
[5] WU C M, CHOU M H. Polymorphism piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes[J]. Compos Sci, Technol, 2016,4(28):127-133.
[6] 李静静, 卢辉, 蒋洁, 等. 高压电性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018,39(2):2-3.
LI Jingjing, LU Hui, JIANG Jie, et al. High piezoelectric zinc oxide/polyvinylidene fluoride composite fiber membrane[J]. Journal of Textile Research, 2018,39(2):2-3.
[7] 程慰. 离子液体对PVDF共混溶液相容性及成膜形貌结构的影响[D]. 广州:华南理工大学, 2013: 6-9.
CHENG Wei. Effect of ionic liquids on compatibility and film morphology of PVDF blends[D]. Guangzhou: South China University of Technology, 2013: 6-9.
[8] YCAY X M, LEI T P, SUN D H, et al. A critical analysis of the α、β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017,25:15383-15389.
[9] BIRANCHE Tandon, ADRIÁN Magaz, RICHARD Balint, et al. Electroactive biomaterials: vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration[J]. Advanced Drug Delivery Reviews, 2017,7(25):1-4.
doi: 10.1016/0169-409X(91)90046-F
[10] 封小玲. 不同处理方式对恩诺沙星体外溶出及抑菌性的影响[D]. 重庆:重庆大学, 2013: 13-17.
FENG Xiaoling. Effects of different treatments on in vitro dissolution and bacteriostasis of enrofloxacin[D]. Chongqing: Chongqing University, 2013: 13-17.
[11] 刘京强, 崔巍巍, 刘立柱, 等. 不同溶剂配比及后处理温度对电纺PVDF/PEI复合纤维薄膜β相含量的影响[J]. 功能材料, 2016,47(8):08222-08225.
LIU Jingqiang, CUI Weiwei, LIU Lizhu, et al. Effect of different solvent ratios and post-treatment temperatures on β phase content of electrospun PVDF/PEI composite fiber films[J]. Functional Materials, 2016,47(8):08222-08225.
[12] 王旋. 静电纺聚偏氟乙烯纳米纤维膜压电性能研究[D]. 上海:东华大学, 2015: 30-31.
WANG Xuan. Study on piezoelectric properties of electrospun polyvinylidene fluoride nanofiber membrane[D]. Shanghai: Donghua University, 2015: 30-31.
[13] 蒋洁, 陈胜, 李静静, 等. 静电纺钛酸钡/聚偏氟乙烯纳米复合柔性压电纤维膜[J]. 纺织学报, 2018,39(2):15-16.
JIANG Jie, CHEN Sheng, LI Jingjing, et al. Electrospun strontium titanate/polyvinylidene fluoride nanocomposite flexible piezoelectric fiber memb-rane[J]. Journal of Textile Research, 2018,39(2):15-16.
doi: 10.1177/004051756903900103
[14] 刘京强. 电纺PVDF/PET复合纤维薄膜的制备与性能研究[D]. 哈尔滨:哈尔滨理工大学, 2016: 35-36.
LIU Jingqiang. Study on preparation and properties of electrospun PVDF/PET composite fiber films[D]. Harbin: Harbin University of Science and Technology, 2016: 35-36.
[15] BORMASHENKO Y, POGREB R, STANEVSKY O. Vibrational spectrum of PVDF and itsinterpretation[J]. Polym Test, 2004,23:791-796.
doi: 10.1016/j.polymertesting.2004.04.001
[16] SALIMI A, YOUSEFI A A. Analysis method FTIR studies of phase crystal formationin stretched PVDF films[J]. Polym Test, 2003,22:699-704.
doi: 10.1016/S0142-9418(03)00003-5
[17] LAI S H, LIU F, ZHANG W. TiO2 nanotubes as animal drug delivery system andin vitro controlled release[J]. Nanosci Nanotechnol, 2013,13:91-97.
[18] MARTINS P, LOPES A C, MENMEZ S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications[J]. Progress in Polymer Science, 2014,39(4):683-706.
doi: 10.1016/j.progpolymsci.2013.07.006
[19] ESTERLY D M, LOVE B J. Phase transformation to beta-poly(vinylidenefluoride) by milling[J]. Journal of Polymer Science Part B: Polymer Physics, 2004,42(1):91-97.
doi: 10.1002/(ISSN)1099-0488
[20] SEYYED A H, SAEED G, MAJED A, et al. Phase transformation to beta-poly(vinylidenefluoride) by milling[J]. Science Direct, 2018,42(1):15710-15716.
[21] 程凤. 载药抗菌创伤敷料的制备与性能研究[D]. 上海:东华大学, 2015: 51-53.
CHENG Feng. Preparation and properties of drug-loaded antibacterial wound dressings[D]. Shanghai: Donghua University, 2015: 51-53.
[1] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile / carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[2] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[3] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[4] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[5] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[6] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[7] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[8] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[9] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[10] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[11] JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108.
[12] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[13] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[14] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[15] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!