Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 26-32.doi: 10.13475/j.fzxb.20190301507

• Fiber Materials • Previous Articles     Next Articles

Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process

ZHEN Qi1, ZHANG Heng2(), ZHU Feichao3, SHI Jianhong4, LIU Yong5, ZHANG Yifeng1   

  1. 1. School of Clothing, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. College of Textile Science and Engineering & International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Suzhou Doro New Material Technology Co., Ltd., Suzhou, Jiangsu 215600, China
    5. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-03-04 Revised:2019-11-24 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Heng E-mail:m-esp@163.com

Abstract:

In order to improve the flexibility of pure polypropylene (PP) microfiber materials, polypropylene/polyester (PP/PET) bi-component micro-nanofibers were prepared by melt-blown blending processing using PET and PP chips. The melt flowing index and thermal properties of the materials were studied, and the morphological characteristics and flexibility of the samples were analyzed experimentally. The sample morphology shows a typical melt-blown fiber webs structure, and the fine and coarse fibers overlap in the horizontal direction forming a layer-by-layer morphology. Besides, the average fiber diameter decreases from 5.52 μm to 3.61 μm when the PET mass ratio increases from 8% to 15%. A clear phase interface is observed between PET and PP components in the bi-component fiber and PET exists in the form of fibers with diameters ranging from 10-100 nm. Furthermore, the flexibility score of the samples increases from 29.91 to 35.20 as PET content increases.

Key words: melt blowing nonwoven, micro-nano fiber, flexibility, polypropylene, polyester

CLC Number: 

  • TS176

Tab.1

Formula for sample preparation"

实验
编号
PET质量
分数/%
PP质
量分数/%
实验
编号
PET质量
分数/%
PP质量
分数/%
1# 0 100 6# 10 90
2# 5 95 7# 10 90
3# 8 92 8# 12 88
4# 10 90 9# 15 85
5# 10 90

Fig.1

Manufacture technology of melt blowing samples"

Fig.2

Melt flow index varying with temperature"

Fig.3

DSC curve of cooling curves (a) and melting curves(b)of PP/PET composites with different PET contents"

Tab.2

Test result of sample properties"

样品
编号
平均厚度/
mm
面密度/
(g·m-2)
孔隙率/
%
1# 0.554 63.49 87.41
2# 0.556 64.09 87.65
3# 0.559 64.73 87.78
4# 0.611 67.05 88.53
5# 0.327 33.52 89.29
6# 0.283 23.14 91.46
7# 0.261 16.42 93.43
8# 0.560 65.01 87.99
9# 0.562 65.45 88.12

Fig.4

SEM images of cross section of PP/PET bicomponent micro-nanofibers webs before (a) and after (b) finished by NaOH solution"

Fig.5

SEM images of surface of PP/PET bicomponent micro-nanofibers webs"

Fig.6

Relationship between average fiber diameters and polyester blending ratio"

Fig.7

Relationship between polyester blending ratio and resilience (a) and softness (b)"

Fig.8

Relationship between mass per unit area and resilience (a) and softness (b)"

[1] 张恒, 甄琪, 刘雍, 等. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018,39(12):18-23.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Preparation and liquid horizontal diffusion properties of polyethylene glycol/polypropylene microfibers with bionic horizontal branched structure[J]. Journal of Textile Research, 2018,39(12):18-23.
[2] 彭孟娜, 贾慧莹, 周彦粉, 等. 热风温度对PP/TPU熔喷非织造布结构与性能的影响[J]. 丝绸, 2018,55(8):35-40.
PENG Mengna, JIA Huiying, ZHOU Yanfen, et al. Study on effect of hot air temperature on structure and property of PP/TPU melt-blown nonwovens[J]. Journal of Silk, 2018,55(8):35-40.
[3] 金关秀, 张毅, 楼永平, 等. 应用粗糙集和支持向量机的熔喷非织造布过滤性能预测[J]. 纺织学报, 2018,39(6):142-148.
JIN Guanxiu, ZHANG Yi, LOU Yongping, et al. Prediction on filtration performance of melt blown nonwoven fabric based on rough set theory and support vector machine[J]. Journal of Textile Research, 2018,39(6):142-148.
[4] 金晓. PP/PE双组分共混熔喷非织造工艺及纤网性能的研究[D]. 上海: 东华大学, 2007: 7-10.
JIN Xiao. Study on process parameters and web properties of PP/PE blends melt-blown nonwovens[D]. Shanghai: Donghua University, 2007: 7-10.
[5] 郦华兴. GF/PP/HDPE复合物的性能研究[J]. 复合材料学报, 1991,8(4):45-50.
LI Huaxing. A study of the properties of gf/pp/hdpe composite[J]. Acta Materiae Compositae Sinica, 1991,8(4):45-50.
[6] MA Yulong, WANG Xiaomeng, LIU Wei, et al. Effects of annealing process on crystallization and low temperature resistance properties of pp-r compo-sites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2018,33(4):855-862.
doi: 10.1007/s11595-018-1904-y
[7] 孟晓华. 熔喷螺旋结构微纳米纤维的制备及其性能研究[D]. 上海: 东华大学, 2015: 23-28.
MENG Xiaohua. Study on the fabrication and property of microscale helical fibers via melt blowing[D]. Shanghai: Donghua University, 2015: 23-28.
[8] LI Hui, HUANG Hui, MENG Xiaohua, et al. Fabrication of helical microfibers from melt blown polymer blends[J]. Journal of Polymer Science: Part B: Polymer Physics, 2018,56(13):970-977.
doi: 10.1002/polb.v56.13
[9] SELEVEN Rungiah, RENUKARN Ruamsuk, PHILIPPE Vroman, et al. Structural characterization of polypropylene/poly(lactic acid) bicomponent melt-blown[J]. Journal of Applied Polymer Science, 2017,134:1-9.
[10] ZHAO R G, WADSWORTH L C. Attenuating PP/PET bicomponent melt blown microfibers[J]. Polymer Engineering & Science, 2010,43(2):463-469.
[11] 刘琼珍, 周舟, 李沐芳, 等. 热塑性纳米纤维的制备及功能化[J]. 中国材料进展, 2014(8):468-474.
LIU Qiongzhen, ZHOU Zhou, LI Mufang, et al. Fabrication and functionalization of thermoplastic nanofibers[J]. Materials China, 2014(8):468-474.
[12] WANG D, SUN G. Novel polymer blends from polyester and bio-based cellulose ester[J]. Journal of Applied Polymer Science, 2011,119(4):2302-2309.
[13] 朱雅红, 马晓燕, 黄韵, 等. 弹性体增韧氰酸酯树脂的研究[J]. 工程塑料应用, 2005,33(1):19-22.
ZHU Yahong, MA Xiaoyan, HUANG Yun, et al. Study on toughening modification of cyanate esters by elastomers[J]. Engineering Plastics Application, 2005,33(1):19-22.
[14] EVERAERT V, AERTS L, GROENINCKX G. Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition[J]. Polymer, 1999,40(24):6627-6644.
[15] ZHANG Heng, QIAN Xiaoming, ZHEN Qi, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro entangle method[J]. Journal of Industrial Textiles, 2015,45(1):48-65.
doi: 10.1177/1528083714521073
[16] 韦良强, 黄安荣, 孙静, 等. iPP/PET原位微纤复合材料的超临界二氧化碳发泡行为[J]. 高分子材料科学与工程, 2018,34(7):66-71.
WEI Liangqiang, HUANG Anrong, SUN Jing, et al. Isotactic polypropylene/polyethylene terephthalate in situ microfibrillar composites foams using supercritical CO2[J]. Polymer Materials Science and Engineering, 2018,34(7):66-71.
[17] 张义盛, 吴德峰, 曹健, 等. PET/PP共混体系的熔融及非等温结晶行为[J]. 塑料科技, 2007(1):28-31.
ZHANG Yisheng, WU Defeng, CAO Jian, et al. Melting and non-isothermal crystallization behavior of PET/PP blend[J]. Plastics Science and Technology, 2017(1):28-31.
[18] 陶友季, 麦堪成. 增容PP/回收PET共混物的非等温结晶和熔融行为研究[J]. 中山大学学报(自然科学版), 2007(4):45-49.
TAO Youji, MAI Kancheng. Study on the non-iso thermal and melting behaviors of compatibilized PP/recycled PET blends[J]. ACTA Scientiarum Naturalium Universitatis Sunyatseni, 2007(4):45-49.
[19] 张红霞, 陈雪善, 刘芙蓉, 等. 蜂窝状微孔结构纤维表面形态观察及其统计分析[J]. 纺织学报, 2009,30(2):13-17.
ZHANG Hongxia, CHEN Xueshan, LIU Furong, et al. observation and statistic analysis of surface structure of honeycomb micropore fiber[J]. Journal of Textile Research, 2009,30(2):13-17.
[20] YU Bin, WANG Mingjun, SUN Hui, et al. Preparation and properties of poly (lactic acid)/magnetic Fe3O4 composites and nonwovens[J]. RSC Advances, 2017,7(66):41929-41935.
doi: 10.1039/C7RA06427F
[1] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester / silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[2] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[3] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[4] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[5] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[6] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[7] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[8] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process [J]. Journal of Textile Research, 2020, 41(10): 20-28.
[9] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[10] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[11] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[12] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[13] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[14] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[15] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!