Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 115-120.doi: 10.13475/j.fzxb.20191002406

• Machinery & Accessories • Previous Articles     Next Articles

Structural design of automatic silk reeling machine for direct silk winding

LUO Hailin, FU Yaqin(), LIU Ke   

  1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2019-10-12 Revised:2020-05-06 Online:2020-08-15 Published:2020-08-21
  • Contact: FU Yaqin E-mail:fyq01@zstu.edu.cn

Abstract:

For the problems of lengthy process, excessive processing steps and low efficiency in the existing silk production, a transformation of the widely used automatic silk reeling machine into a new type of automatic silk reeling machine for direct silk winding was explored by learning from the winding technology and the tension control of advanced winder. This new automatic reeling machine retained the front part of the silk reeling thread route of traditional automatic silk reeling machine, and the small reel for winding, however, was transformed into a single-thread-controlled bobbin for winding with a suitable drying method. An oiling device and an overfeeding device were added to the winding unit. The synchronous control of the winding unit and the overfeeding device was realized by the frequency conversion technology. When the silk was reeled using the transformed silk reeling machine, the results show that the silk can be wound continuously and stably on the bobbin, which has the same performance under suitable conditions with silks on small reels or on bobbin produced by traditional process and satisfies the requirements of post-processing.

Key words: direct bobbin winding, automatic silk reeling machine, tension control, overfeeding device, silk

CLC Number: 

  • TS142.2

Fig.1

Reeling thread route on automatic silk reeling machine"

Fig.2

Reeling thread route of improved automatic silk reeling machine by this paper"

Fig.3

Structure of traversing and winding device"

Fig.4

Structure of overfeeding device"

Fig.5

Connection diagram of frequency converter"

Fig.6

Structure of tension adjustment device"

Fig.7

Structure of oiling device"

Fig.8

Structure of drying device"

Tab.1

Performance indicators of three raw silk samples"

试样 断裂强度 断裂伸长率 初始模量 回潮率/
%
抱合/
平均值/(cN·dtex-1) CV值/% 平均值/% CV值/% 平均值/(cN·dtex-1) CV值/%
筒装丝A 3.7 4.6 22.2 8.7 88.2 6.3 10.6 102
3.8 5.1 20.9 7.5 95.3 6.9 11.4 118
筒装丝B 3.5 5.3 23.8 8.3 85.6 7.4 10.9 85
[1] BABU K M. Silk: processing, properties and applications[M]. Cambridge: Woodhead Publishing Ltd, 2013: 33-55.
[2] 祝成炎, 周小红. 现代织造原理与应用[M]. 北京: 中国纺织出版社, 2016: 3-49.
ZHU Chengyan, ZHOU Xiaohong. Principles and applications of modern weaving technology[M]. Beijing: China Textile & Apparel Press, 2016: 3-49.
[3] 胡才强, 陈美丽, 周丽娟, 等. 小竹或浸渍工艺的实验探究[J]. 丝绸, 2012,49(7):25-29.
HU Caiqiang, CHEN Meili, ZHOU Lijuan, et al. An experimental study on the soaking process of reeling silk[J]. Journal of Silk, 2012,49(7):25-29.
[4] MILIND K. Fundamentals of yarn winding[M]. New Delhi: Woodhead Publishing India Pvt Ltd, 2013: 1-26.
[5] 许丽珍. 精密卷绕络筒机的嵌入式单锭控制系统[J]. 天津工业大学学报, 2011,30(4):62-64.
XU Lizhen. Embedding electrical single spindle control system of precision package winder[J]. Journal of Tianjin Polytechnic University, 2011,30(4):62-64.
[6] DING Caihong, TANG Jun. Research on yarn tension under positive guiding by feed rollers[J]. Journal of Donghua University(English Edition), 2010,27(1):41-45.
[7] 金春奎. 松式络筒机张力装置的分析与改进[J]. 上海纺织科技, 2018,46(10):23-26.
JIN Chunkui. Analysis and improvement of tension adjusting device on soft-cone winder[J]. Shanghai Textile Science & Technology, 2018,46(10):23-26.
[8] 徐作耀. 智能化新型自动缫丝机(飞宇2008型)通过浙江省省级鉴定[J]. 丝绸, 2009,46(2):45.
XU Zuoyao. Intelligent new automatic silk reeling machine (Feiyu 2008 type) passed the appraisal of Zhejiang province[J]. Journal of Silk, 2009,46(2):45.
[9] 徐作耀. 改革开放30年中国自动缫丝机研发的辉煌成就[J]. 丝绸, 2009,46(7):1-5.
XU Zuoyao. The brilliant research achievement of Chinese automatic silk reeling machine during30 years of reform and opening[J]. Journal of Silk, 2009,46(7):1-5.
[10] 陈文兴, 傅雅琴. 蚕丝加工工程[M]. 北京: 中国纺织出版社, 2013: 51-187.
CHEN Wenxing, FU Yaqin. Silk processing enginee-ring[M]. Beijing: China Textile & Apparel Press, 2013: 51-187.
[11] 周贤, 王英, 陈建能, 等. 缫丝机卷绕机构参数优化及其试验验证[J]. 纺织学报, 2019,40(6):97-105.
ZHOU Xian, WANG Ying, CHEN Jianneng, et al. Parameter optimization and experiments for winding mechanism of silk reeling machine[J]. Journal of Textile Research, 2019,40(6):97-105.
[12] 姚俊红. 络筒机用计长仪的研制[J]. 纺织学报, 2012,33(9):126-129.
YAO Junhong. Research and development of yarn length recorder for cone winding[J]. Journal of Textile Research, 2012,33(9):126-129.
[13] ZHOU M L, FU Y H, HE Z Q, et al. The design of yarn constant tension feeder system[J]. Applied Mechanics and Materials, 2013,274(1):294-298.
[14] 佟昀. 变频调速器在现代织造设备上的应用[J]. 上海纺织科技, 2009,37(2):1-4.
TONG Yun. Application of frequency converter on modern weaving machinery[J]. Shanghai Textile Sci-ence & Technology, 2009,37(2):1-4.
[15] WANG R, JIANG W B, LI S. Application research on infrared drying in silk re-reeling process[J]. Textile Research Journal, 2012,82(13):1329-1336.
[16] 周明星, 孟婥, 孙以泽. 毛/腈纶混纺织物在远红外烘箱中的干燥特性[J]. 纺织学报, 2018,39(3):67-72.
ZHOU Mingxing, MENG Zhuo, SUN Yize. Drying properties of wool/acrylic blended fabric in far-infrared oven[J]. Journal of Textile Research, 2018,39(3):67-72.
[17] 马成龙, 陈文兴, 江文斌, 等. 红外干燥短流程制丝工艺探析[J]. 丝绸, 2014,51(1):5-8.
MA Chenglong, CHEN Wenxing, JIANG Wenbin, et al. Exploration on short-process silk making technology with infrared drying[J]. Journal of Silk, 2014,51(1):5-8.
[18] WANG X X, FU Y Q, LIU C X, et al. Technological parameters optimization by orthogonal array designs for steeping silk slices on small reels[J]. Textile Research Journal, 2013,83(20):2211-2218.
[19] 黄继伟, 洪基武, 林海涛, 等. 鲜茧缫生丝与干茧缫生丝的性能对比[J]. 丝绸, 2013,50(11):28-32.
HUANG Jiwei, HONG Jiwu, LIN Haitao, et al. Contrast on properties of the fresh cocoon silk and the dried cocoon silk[J]. Journal of Silk, 2013,50(11):28-32.
[20] 戴冬冬. 短流程缫丝红外干燥技术的研究[D]. 杭州:浙江理工大学, 2015: 29-39.
DAI Dongdong. Development of short-process silk reeling of infrared drying technique[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 29-39.
[1] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[2] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[3] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[4] HUANG Yangyang, LIU Wei, HUA Ying, ZHAO Zhongqi, XU Jin. Development of novel intelligent silk quilt for young children [J]. Journal of Textile Research, 2020, 41(10): 150-157.
[5] PENG Xi, ZHOU Jiu. Characteristics and evolution of backed weave structure of brocade in ancient China [J]. Journal of Textile Research, 2020, 41(09): 67-75.
[6] GUO Lang, WANG Liqin, ZHAO Xing. Thermal aging and life prediction of silk fabrics [J]. Journal of Textile Research, 2020, 41(07): 47-52.
[7] SONG Huijun, ZHAI Yali, CHAO Yiyuan, ZHU Chaoyu. Silk fabric dyed with gardenia blue pigment [J]. Journal of Textile Research, 2020, 41(06): 81-85.
[8] ZHANG Wei, MAO Qingkai, ZHU Peng, CHAI Xiong, LI Huijun. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol/water system [J]. Journal of Textile Research, 2020, 41(06): 86-92.
[9] ZHENG Hongfei, WANG Ruiqi, WANG Qing, ZHU Ying, XU Yunhui. Preparation and properties of antibacterial silk fabric modified with oxidized chitosan [J]. Journal of Textile Research, 2020, 41(05): 121-128.
[10] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[11] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[12] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[13] WU Ronghui, MA Liyun, ZHANG Yifan, LIU Xiangyang, YU Weidong. Strain sensor based on silver nanowires coated yarn with chain stitch structure [J]. Journal of Textile Research, 2019, 40(12): 45-49.
[14] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[15] TU Li, MENG Jiaguang, LI Xin, LI Juanzi. Composition analysis and stripping process of waste wool/silk/cotton blended fabric [J]. Journal of Textile Research, 2019, 40(11): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!