纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 140-148.doi: 10.13475/j.fzxb.20210702709

• 染整与化学品 • 上一篇    下一篇

草酸稀溶液高效分离废旧聚酯/棉混纺织物

史晟1,2,3, 王彦1,2, 李飞2,4, 唐建东2,3, 高翔宇4, 侯文生1,2, 郭红1,2(), 王淑花1,2, 姬佳奇1,2   

  1. 1.太原理工大学 轻纺工程学院, 山西 晋中 030600
    2.纺织行业废旧涤棉纺织品清洁再生重点实验室,山西 晋中 030600
    3.际华三五四二纺织有限公司, 湖北 襄阳 441000
    4.安徽天助纺织科技集团股份有限公司, 安徽 阜阳 236000
  • 收稿日期:2021-07-07 修回日期:2021-12-03 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 郭红
  • 作者简介:史晟(1986—),男,讲师,博士。主要研究方向为纺织材料的循环利用。
  • 基金资助:
    国家自然科学基金项目(21802101);国家自然科学基金项目(51903184);山西省自然科学基金项目(20210302124058);山西省自然科学基金项目(20210302124492)

Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution

SHI Sheng1,2,3, WANG Yan1,2, LI Fei2,4, TANG Jiandong2,3, GAO Xiangyu4, HOU Wensheng1,2, GUO Hong1,2(), WANG Shuhua1,2, JI Jiaqi1,2   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    2. Key Laboratory of Waste Polyester Cotton Textiles for Cleaning and Regeneration in Textile Industry, Jinzhong, Shanxi 030600, China
    3. Jihua 3542 Textile Co., Ltd., Xiangyang, Hubei 441000, China
    4. Anhui Tianzhu Textile Science Technology Co., Ltd., Fuyang, Anhui 236000, China
  • Received:2021-07-07 Revised:2021-12-03 Published:2022-02-15 Online:2022-03-15
  • Contact: GUO Hong

摘要:

针对废旧纺织品循环利用中聚酯纤维、棉纤维混纺纱线结构紧密缠绕,难以分离而无法加工的问题,采用环境友好的草酸体系选择性水解混纺织物中的棉纤维,从而释放聚酯纤维实现有效分离,并对草酸体系分离工艺进一步优化。研究表明:与无机酸相比,在相同反应条件下,草酸可达到与盐酸相当的分离效果且所得聚酯纤维形态更完整,棉纤维水解程度更低,水解产物分布更窄;在草酸浓度为0.07 mol/L、反应温度为130 ℃、反应时间为3 h的条件下,聚酯/棉混纺织物的分离效果最优;其中棉纤维水解为纤维素材料,得率为91.46%,另有小部分水解为葡萄糖或低聚糖;聚酯纤维回收率高达99.28%,且保留了原有聚酯纤维的性能,可直接生产加工;该反应体系可循环利用多次,实现了废旧聚酯/棉混纺织物的高效综合利用。

关键词: 废旧聚酯/棉混纺织物分离, 草酸, 选择性水解, 循环利用

Abstract:

In view of the problem that tightly twisted polyester and cotton fibers in blended yarns are difficult to separate and hence unable to be processed in the recycling of waste textiles, an environmentally friendly oxalic acid system was used to selectively hydrolyze the cotton fiber of blended fabric hence releasing the polyester fiber to achieve effective separation. The conditions of oxalic acid treatment were further optimized. The results show that oxalic acid can achieve the same separation effect as hydrochloric acid under the same reaction conditions, and the morphology of polyester fiber is more complete, the hydrolysis degree of cotton fiber is lower and the distribution of hydrolysate is narrower. When the oxalic acid concentration is 0.07 mol/L, the reaction temperature is 130 ℃ and the reaction time is 3 h, the separation effect of polyester and cotton in the blended fabric reach the best level, where the yield of cotton fiber hydrolyzed into cellulose reaches 91.46%, with a small part being hydrolyzed into glucose or other oligosaccharides. The recovery ratio of polyester fiber is as high as 99.28%, retaining the original physical and chemical properties, which can be directly processed for textile production. The reaction system can be used for many times, facilitating the high efficiency and comprehensive utilization of waste polyester/cotton blended fabrics.

Key words: separation of waste polyester/cotton fabric, oxalic acid, selective hydrolysis, recycling

中图分类号: 

  • TS102.9

表1

草酸体系分离工艺的不同反应条件"


草酸浓度/
(mol·L-1)
反应温
度/℃
反应时
间/h

草酸浓度/
(mol·L-1)
反应温
度/℃
反应时
间/h
1# 0.01 150 3 12# 0.49 150 3
2# 0.03 150 3 13# 1.40 150 3
3# 0.05 150 3 14# 0.07 120 3
4# 0.07 150 3 15# 0.07 130 3
5# 0.09 150 3 16# 0.07 140 3
6# 0.11 150 3 17# 0.07 160 3
7# 0.14 150 3 18# 0.07 130 1
8# 0.21 150 3 19# 0.07 130 2
9# 0.28 150 3 20# 0.07 130 4
10# 0.35 150 3 21# 0.07 130 5
11# 0.42 150 3

图1

盐酸、草酸体系中废旧聚酯/棉混纺织物分离效果对比图"

表2

不同反应条件下分离所得聚酯纤维回收率和纤维素得率"

编号 聚酯纤维回
收率/%
纤维素
得率/%
编号 聚酯纤维回
收率/%
纤维素
得率/%
1# * 49.21 12# 98.73 81.01
2# * 84.96 13# 98.73 70.85
3# * 85.99 14# * 77.83
4# 98.92 89.26 15# 99.28 91.46
5# 98.73 87.70 16# 99.04 89.64
6# 98.54 83.57 17# 98.41 76.85
7# 98.33 84.20 18# * 24.80
8# 98.62 82.31 19# * 88.41
9# 98.36 84.54 20# 99.22 88.93
10# 98.69 82.88 21# 99.12 88.11
11# 98.46 82.43

图2

不同反应条件下草酸处理废旧聚酯/棉混纺织物后织物的扫描电镜照片"

图3

草酸体系中废旧聚酯/棉混纺织物分离所得产物的扫描电子显微镜照片(×500)"

图4

聚酯纤维原样及分离所得聚酯纤维红外光谱图和X射线衍射谱图"

图5

棉纤维原样及分离所得纤维素的红外光谱图和X射线衍射谱图"

图6

聚酯纤维原样及分离所得聚酯纤维的热重曲线"

图7

草酸体系分离废旧聚酯/棉混纺织物效率图 注:WBF表示废旧聚酯/棉混纺织物;R1~R4表示循环1~4次后的聚酯纤维回收率; Y1~Y5表示循环1~5次后的纤维素得率。"

[1] MÄÄTTÄNEN Marjo, GUNNARSSON Maria, WEDIN Helena, et al. Pre-treatments of pre-consumer cotton-based textile waste for production of textile fibres in the cold NaOH(aq) and cellulose carbamate processes[J]. Cellulose, 2021, 28(6): 3869-3886.
doi: 10.1007/s10570-021-03753-6
[2] LI Xin, WANG Laili, DING Xuemei. Textile supply chain waste management in China[J]. Journal of Cleaner Production, 2021, 289:125147.
doi: 10.1016/j.jclepro.2020.125147
[3] GUO Zengwei, ERIKSSON Mikael, DE LA MOTTE Hanna, et al. Circular recycling of polyester textile waste using a sustainable catalyst[J]. Journal of Cleaner Production, 2021, 283:124579.
doi: 10.1016/j.jclepro.2020.124579
[4] HUANG Beijia, ZHAO Juan, GENG Yong, et al. Energy-related GHG emissions of the textile industry in China[J]. Resources, Conservation and Recycling, 2017, 119:69-77.
doi: 10.1016/j.resconrec.2016.06.013
[5] DE SILVA Rasike, WANG Xungai, BYRNE Nolene. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 4(55): 29094-29098.
doi: 10.1039/C4RA04306E
[6] LING Chen, SHI Sheng, HOU Wensheng, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165.
doi: 10.1016/j.polymdegradstab.2019.01.022
[7] YOUSEF Samy, TATARIANTS Maksym, TICHONOVAS Martynas, et al. Sustainable green technology for recovery of cotton fibers and polyester from textile waste[J]. Journal of Cleaner Production, 2020, 254:120078.
doi: 10.1016/j.jclepro.2020.120078
[8] SUN Xunwen, LU Canhui, ZHANG Wei, et al. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation[J]. Carbohydrate Polymers, 2013, 98(1): 405-411.
doi: 10.1016/j.carbpol.2013.05.089 pmid: 23987361
[9] SUBRAMANIAN Karpagam, CHOPRA Shauhrat S, CAKIN Ezgi, et al. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to PET fiber and glucose syrup[J]. Resources Conservation and Recycling, 2020, 161:104989.
doi: 10.1016/j.resconrec.2020.104989
[10] SHEN Fei, XIAO Wenxiong, LIN Lili, et al. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255.
doi: 10.1016/j.biortech.2012.12.025
[11] KUO Chiahung, LIN Poju, LEE Chengkang. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by gluconacetobacter xylinus[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(10): 1346-1352.
[12] GHOLAMZAD Elahe, KARIMI Keikhosro, MASOOMI Mahmood. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253:40-45.
doi: 10.1016/j.cej.2014.04.109
[13] JIANG Shuai, XIA Zhaopeng, FAROOQ Amjad, et al. Efficient recovery of the dyed cotton-polyester fabric: cellulose nanocrystal extraction and its application in composite films[J]. Cellulose, 2021, 28(5): 3235-3248.
doi: 10.1007/s10570-021-03738-5
[14] SANCHISSEBASTIÁ Miguel, RUUTH Edvin, STIGSSON Lars, et al. Novel sustainable alternatives for the fashion industry: a method of chemically recycling waste textiles via acid hydrolysis[J]. Waste Management, 2021, 121:248-254.
doi: 10.1016/j.wasman.2020.12.024
[15] OUCHI Akihiko, TOIDA Tatsuo, KUMARESAN Subramanian, et al. A new methodology to recycle polyester from fabric blends with cellulose[J]. Cellulose, 2010, 17(1): 215-222.
doi: 10.1007/s10570-009-9358-1
[16] HOU Wensheng, LING Chen, SHI Sheng, et al. Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method[J]. Fibers and Polymers, 2018, 19(4): 742-750.
doi: 10.1007/s12221-018-7735-9
[17] CHOTIROTSUKON Chayanon, RAITA Marisa, CHAMPREDA Verawat, et al. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification[J]. Industrial Crops and Products, 2019, 141:111753.
doi: 10.1016/j.indcrop.2019.111753
[18] LEE Jae Won, JEFFRIES Thomas W. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors[J]. Bioresource Technology, 2011, 102(10): 5884-5890.
doi: 10.1016/j.biortech.2011.02.048 pmid: 21377872
[19] LACERDA Talita M, ZARNBON Marcia D, FROLLINI Elisabete. Oxalic acid as a catalyst for the hydrolysis of sisal pulp[J]. Industrial Crops and Products, 2015, 71:163-172.
doi: 10.1016/j.indcrop.2015.03.072
[20] GÜRÜ Metin, BILGESÜ Ali Y, PAMUK Vecihi. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides[J]. Bioresource Technology, 2001, 77(1): 81-6.
doi: 10.1016/S0960-8524(00)00122-X
[21] LU Yulin, MOSIER Nathan S. Biomimetic catalysis for hemicellulose hydrolysis in corn stover[J]. Biotechnology Progress, 2007, 23(1): 116-123.
pmid: 17269678
[22] LI Xun, LI Mingfei, BIAN Jing, et al. Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products[J]. RSC Advances, 2015, 5(94): 77147-77153.
doi: 10.1039/C5RA15063A
[23] SEGAL L, CREELY J J, MARTIN J A. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003
[24] SHI Sheng, ZHANG Meiling, ZHANG Suying, et al. Evolution of physicochemical structure of waste cotton fiber (hydrochar) during hydrothermal carbonation[J]. Autex Research Journal, 2020, 20(3): 319-326.
doi: 10.2478/aut-2019-0041
[25] JIANG Yijun, LI Xiutao, WANG Xicheng, et al. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation[J]. Green Chemistry, 2012, 14(8): 2162-2167.
doi: 10.1039/c2gc35306g
[26] QIANG Dandan, ZHANG Meiyun, LI Jinbao, et al. Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2): 1199-1207.
doi: 10.1007/s10570-016-0858-5
[27] MURTHY N S, CORREALE S T, MINOR H. Structure of the amorphous phase in crystallizable polymers: poly(ethylene terephthalate)[J]. Macromolecules, 1991, 24(5): 1185-1189.
doi: 10.1021/ma00005a033
[28] LU Ping, HSIEH You Lo. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2): 329-336.
doi: 10.1016/j.carbpol.2010.04.073
[29] MO Zunli, ZHAO Zhongli, CHEN Hong, et al. Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties[J]. Carbohydrate Polymers, 2009, 75(4): 660-664.
doi: 10.1016/j.carbpol.2008.09.010
[30] SHI Sheng, ZHANG Meiling, LING Chen, et al. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method[J]. Waste Management, 2018, 82:139-146.
doi: S0956-053X(18)30641-X pmid: 30509575
[31] XU Wenyang, GRÉNMAN Henrik, LIU Jun, et al. Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals[J]. Chemnanomat, 2017, 3(2): 109-119.
doi: 10.1002/cnma.201600347
[32] YU Houyong, YAN Chenfeng, LEI Xiaoxia, et al. Novel approach to extract thermally stable cellulose nanospheres with high yield[J]. Materials Letters, 2014, 131:12-15.
doi: 10.1016/j.matlet.2014.05.159
[33] WADA Masahisa, HEUX Laurent, SUGIYAMA Junji. Polymorphism of cellulose I family: reinvestigation of cellulose IVI[J]. Biomacromolecules, 2004, 5(4): 1385-1391.
pmid: 15244455
[34] LUO Jing, HUANG Kaixuan, XU Yong, et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation[J]. Cellulose, 2019, 26(9): 5237-5246.
doi: 10.1007/s10570-019-02454-5
[35] MANCINI Sandro Donnini, ZANIN Maria. Post consumer PET depolymerization by acid hydrolysis[J]. Polymer:Plastics Technology and Engineering, 2007, 46(2): 135-144.
doi: 10.1080/03602550601152945
[36] SINHA Vijaykumar, PATEL Mayank R, PATEL Jigar V. PET waste management by chemical recycling: areview[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
doi: 10.1007/s10924-008-0106-7
[37] WANG Xin, LV Tao, WU Minghui, et al. Aluminum doped solid acid with suitable ratio of bronsted and Lewis acid sites synthesized by electric-flocculation of phosphotungstic acid via hydrothermal treatment for producing 5-hydroxymethylfurfural from glucose[J]. Applied Catalysis A: General, 2019, 574:87-96.
doi: 10.1016/j.apcata.2019.02.005
[38] RAMLI Nur Aainaa Syahirah, AMIN Nor Aishah Saidina. A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407:113-121.
doi: 10.1016/j.molcata.2015.06.030
[1] 周大旺, 乌婧, 杨建平, 陈烨, 吉鹏, 王华平. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(06): 8-17.
[2] 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93.
[3] 李龙 张胜靖. 棉秆皮纤维的草酸软化处理工艺[J]. 纺织学报, 2016, 37(3): 21-24.
[4] 戴细春 高梅 殷珉扬 王祥荣. 应用草酸的天然染料印花织物白地上媒染剂的去除[J]. 纺织学报, 2014, 35(10): 85-0.
[5] 于永玲;吕丽华;赵玉萍;魏春艳;崔靖;陈超. 日本纤维循环利用现状及发展趋势[J]. 纺织学报, 2010, 31(10): 151-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[8] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[9] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .
[10] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36 -42 .