纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 140-148.doi: 10.13475/j.fzxb.20210702709
史晟1,2,3, 王彦1,2, 李飞2,4, 唐建东2,3, 高翔宇4, 侯文生1,2, 郭红1,2(
), 王淑花1,2, 姬佳奇1,2
SHI Sheng1,2,3, WANG Yan1,2, LI Fei2,4, TANG Jiandong2,3, GAO Xiangyu4, HOU Wensheng1,2, GUO Hong1,2(
), WANG Shuhua1,2, JI Jiaqi1,2
摘要:
针对废旧纺织品循环利用中聚酯纤维、棉纤维混纺纱线结构紧密缠绕,难以分离而无法加工的问题,采用环境友好的草酸体系选择性水解混纺织物中的棉纤维,从而释放聚酯纤维实现有效分离,并对草酸体系分离工艺进一步优化。研究表明:与无机酸相比,在相同反应条件下,草酸可达到与盐酸相当的分离效果且所得聚酯纤维形态更完整,棉纤维水解程度更低,水解产物分布更窄;在草酸浓度为0.07 mol/L、反应温度为130 ℃、反应时间为3 h的条件下,聚酯/棉混纺织物的分离效果最优;其中棉纤维水解为纤维素材料,得率为91.46%,另有小部分水解为葡萄糖或低聚糖;聚酯纤维回收率高达99.28%,且保留了原有聚酯纤维的性能,可直接生产加工;该反应体系可循环利用多次,实现了废旧聚酯/棉混纺织物的高效综合利用。
中图分类号:
| [1] |
MÄÄTTÄNEN Marjo, GUNNARSSON Maria, WEDIN Helena, et al. Pre-treatments of pre-consumer cotton-based textile waste for production of textile fibres in the cold NaOH(aq) and cellulose carbamate processes[J]. Cellulose, 2021, 28(6): 3869-3886.
doi: 10.1007/s10570-021-03753-6 |
| [2] |
LI Xin, WANG Laili, DING Xuemei. Textile supply chain waste management in China[J]. Journal of Cleaner Production, 2021, 289:125147.
doi: 10.1016/j.jclepro.2020.125147 |
| [3] |
GUO Zengwei, ERIKSSON Mikael, DE LA MOTTE Hanna, et al. Circular recycling of polyester textile waste using a sustainable catalyst[J]. Journal of Cleaner Production, 2021, 283:124579.
doi: 10.1016/j.jclepro.2020.124579 |
| [4] |
HUANG Beijia, ZHAO Juan, GENG Yong, et al. Energy-related GHG emissions of the textile industry in China[J]. Resources, Conservation and Recycling, 2017, 119:69-77.
doi: 10.1016/j.resconrec.2016.06.013 |
| [5] |
DE SILVA Rasike, WANG Xungai, BYRNE Nolene. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 4(55): 29094-29098.
doi: 10.1039/C4RA04306E |
| [6] |
LING Chen, SHI Sheng, HOU Wensheng, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165.
doi: 10.1016/j.polymdegradstab.2019.01.022 |
| [7] |
YOUSEF Samy, TATARIANTS Maksym, TICHONOVAS Martynas, et al. Sustainable green technology for recovery of cotton fibers and polyester from textile waste[J]. Journal of Cleaner Production, 2020, 254:120078.
doi: 10.1016/j.jclepro.2020.120078 |
| [8] |
SUN Xunwen, LU Canhui, ZHANG Wei, et al. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation[J]. Carbohydrate Polymers, 2013, 98(1): 405-411.
doi: 10.1016/j.carbpol.2013.05.089 pmid: 23987361 |
| [9] |
SUBRAMANIAN Karpagam, CHOPRA Shauhrat S, CAKIN Ezgi, et al. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to PET fiber and glucose syrup[J]. Resources Conservation and Recycling, 2020, 161:104989.
doi: 10.1016/j.resconrec.2020.104989 |
| [10] |
SHEN Fei, XIAO Wenxiong, LIN Lili, et al. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255.
doi: 10.1016/j.biortech.2012.12.025 |
| [11] | KUO Chiahung, LIN Poju, LEE Chengkang. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by gluconacetobacter xylinus[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(10): 1346-1352. |
| [12] |
GHOLAMZAD Elahe, KARIMI Keikhosro, MASOOMI Mahmood. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253:40-45.
doi: 10.1016/j.cej.2014.04.109 |
| [13] |
JIANG Shuai, XIA Zhaopeng, FAROOQ Amjad, et al. Efficient recovery of the dyed cotton-polyester fabric: cellulose nanocrystal extraction and its application in composite films[J]. Cellulose, 2021, 28(5): 3235-3248.
doi: 10.1007/s10570-021-03738-5 |
| [14] |
SANCHISSEBASTIÁ Miguel, RUUTH Edvin, STIGSSON Lars, et al. Novel sustainable alternatives for the fashion industry: a method of chemically recycling waste textiles via acid hydrolysis[J]. Waste Management, 2021, 121:248-254.
doi: 10.1016/j.wasman.2020.12.024 |
| [15] |
OUCHI Akihiko, TOIDA Tatsuo, KUMARESAN Subramanian, et al. A new methodology to recycle polyester from fabric blends with cellulose[J]. Cellulose, 2010, 17(1): 215-222.
doi: 10.1007/s10570-009-9358-1 |
| [16] |
HOU Wensheng, LING Chen, SHI Sheng, et al. Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method[J]. Fibers and Polymers, 2018, 19(4): 742-750.
doi: 10.1007/s12221-018-7735-9 |
| [17] |
CHOTIROTSUKON Chayanon, RAITA Marisa, CHAMPREDA Verawat, et al. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification[J]. Industrial Crops and Products, 2019, 141:111753.
doi: 10.1016/j.indcrop.2019.111753 |
| [18] |
LEE Jae Won, JEFFRIES Thomas W. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors[J]. Bioresource Technology, 2011, 102(10): 5884-5890.
doi: 10.1016/j.biortech.2011.02.048 pmid: 21377872 |
| [19] |
LACERDA Talita M, ZARNBON Marcia D, FROLLINI Elisabete. Oxalic acid as a catalyst for the hydrolysis of sisal pulp[J]. Industrial Crops and Products, 2015, 71:163-172.
doi: 10.1016/j.indcrop.2015.03.072 |
| [20] |
GÜRÜ Metin, BILGESÜ Ali Y, PAMUK Vecihi. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides[J]. Bioresource Technology, 2001, 77(1): 81-6.
doi: 10.1016/S0960-8524(00)00122-X |
| [21] |
LU Yulin, MOSIER Nathan S. Biomimetic catalysis for hemicellulose hydrolysis in corn stover[J]. Biotechnology Progress, 2007, 23(1): 116-123.
pmid: 17269678 |
| [22] |
LI Xun, LI Mingfei, BIAN Jing, et al. Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products[J]. RSC Advances, 2015, 5(94): 77147-77153.
doi: 10.1039/C5RA15063A |
| [23] |
SEGAL L, CREELY J J, MARTIN J A. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003 |
| [24] |
SHI Sheng, ZHANG Meiling, ZHANG Suying, et al. Evolution of physicochemical structure of waste cotton fiber (hydrochar) during hydrothermal carbonation[J]. Autex Research Journal, 2020, 20(3): 319-326.
doi: 10.2478/aut-2019-0041 |
| [25] |
JIANG Yijun, LI Xiutao, WANG Xicheng, et al. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation[J]. Green Chemistry, 2012, 14(8): 2162-2167.
doi: 10.1039/c2gc35306g |
| [26] |
QIANG Dandan, ZHANG Meiyun, LI Jinbao, et al. Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2): 1199-1207.
doi: 10.1007/s10570-016-0858-5 |
| [27] |
MURTHY N S, CORREALE S T, MINOR H. Structure of the amorphous phase in crystallizable polymers: poly(ethylene terephthalate)[J]. Macromolecules, 1991, 24(5): 1185-1189.
doi: 10.1021/ma00005a033 |
| [28] |
LU Ping, HSIEH You Lo. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2): 329-336.
doi: 10.1016/j.carbpol.2010.04.073 |
| [29] |
MO Zunli, ZHAO Zhongli, CHEN Hong, et al. Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties[J]. Carbohydrate Polymers, 2009, 75(4): 660-664.
doi: 10.1016/j.carbpol.2008.09.010 |
| [30] |
SHI Sheng, ZHANG Meiling, LING Chen, et al. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method[J]. Waste Management, 2018, 82:139-146.
doi: S0956-053X(18)30641-X pmid: 30509575 |
| [31] |
XU Wenyang, GRÉNMAN Henrik, LIU Jun, et al. Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals[J]. Chemnanomat, 2017, 3(2): 109-119.
doi: 10.1002/cnma.201600347 |
| [32] |
YU Houyong, YAN Chenfeng, LEI Xiaoxia, et al. Novel approach to extract thermally stable cellulose nanospheres with high yield[J]. Materials Letters, 2014, 131:12-15.
doi: 10.1016/j.matlet.2014.05.159 |
| [33] |
WADA Masahisa, HEUX Laurent, SUGIYAMA Junji. Polymorphism of cellulose I family: reinvestigation of cellulose IVI[J]. Biomacromolecules, 2004, 5(4): 1385-1391.
pmid: 15244455 |
| [34] |
LUO Jing, HUANG Kaixuan, XU Yong, et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation[J]. Cellulose, 2019, 26(9): 5237-5246.
doi: 10.1007/s10570-019-02454-5 |
| [35] |
MANCINI Sandro Donnini, ZANIN Maria. Post consumer PET depolymerization by acid hydrolysis[J]. Polymer:Plastics Technology and Engineering, 2007, 46(2): 135-144.
doi: 10.1080/03602550601152945 |
| [36] |
SINHA Vijaykumar, PATEL Mayank R, PATEL Jigar V. PET waste management by chemical recycling: areview[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
doi: 10.1007/s10924-008-0106-7 |
| [37] |
WANG Xin, LV Tao, WU Minghui, et al. Aluminum doped solid acid with suitable ratio of bronsted and Lewis acid sites synthesized by electric-flocculation of phosphotungstic acid via hydrothermal treatment for producing 5-hydroxymethylfurfural from glucose[J]. Applied Catalysis A: General, 2019, 574:87-96.
doi: 10.1016/j.apcata.2019.02.005 |
| [38] |
RAMLI Nur Aainaa Syahirah, AMIN Nor Aishah Saidina. A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407:113-121.
doi: 10.1016/j.molcata.2015.06.030 |
| [1] | 周大旺, 乌婧, 杨建平, 陈烨, 吉鹏, 王华平. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(06): 8-17. |
| [2] | 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93. |
| [3] | 李龙 张胜靖. 棉秆皮纤维的草酸软化处理工艺[J]. 纺织学报, 2016, 37(3): 21-24. |
| [4] | 戴细春 高梅 殷珉扬 王祥荣. 应用草酸的天然染料印花织物白地上媒染剂的去除[J]. 纺织学报, 2014, 35(10): 85-0. |
| [5] | 于永玲;吕丽华;赵玉萍;魏春艳;崔靖;陈超. 日本纤维循环利用现状及发展趋势[J]. 纺织学报, 2010, 31(10): 151-154. |
|