纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 167-174.doi: 10.13475/j.fzxb.20220307401

• 染整与化学品 • 上一篇    下一篇


谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2022-03-21 修回日期:2023-04-04 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 王潮霞(1969—),女,教授,博士。主要研究方向为智能纺织品。E-mail: wchaoxia@sohu.com
  • 作者简介:谭家玲(1999—),女,硕士生。主要研究方向为智能变色纺织化学品。
  • 基金资助:

Preparation and properties of multichromatic thermochromic cotton fabrics using SiO2 microcapsules

TAN Jialing, LIU Jiayin, YU Weidong, YIN Yunjie, WANG Chaoxia()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-03-21 Revised:2023-04-04 Published:2023-07-15 Online:2023-08-10


为解决温敏变色织物颜色变化范围较窄的问题,以正硅酸四乙酯(TEOS)为硅源,荧烷-二苯砜-脂肪醇为芯材,采用溶胶-凝胶法制备多种颜色的SiO2壳温敏变色微胶囊,拼混后上染棉织物,得到随温度变化可产生连续色谱变色的棉织物。对微胶囊的微观形貌、热稳定性、变色时间、变色温度、颜色变化等性能进行研究。结果表明:微胶囊大小分散均匀,热稳定性良好,热降解温度高于200 ℃,加热-冷却循环50次后,K/S值变化仅为0.01,且棉织物热响应颜色变化仍明显;不同变色温度的红、黄、蓝3种微胶囊复配整理到棉织物上后,得到的多色谱温敏变色棉织物可实现阶梯变色,变色性能良好且变色效果明显。

关键词: 微胶囊, 多色谱变色, 温敏变色, 棉织物, 溶胶-凝胶法, SiO2


Objective Low-temperature reversible thermochromic textiles are not only fashionable and attractive, but also applicable for temperature indication and anti-counterfeiting, showing the potential economic and social benefits of thermochromic textiles. However, the majority of thermochromic textiles are currently available for single-color change, e.g. from colored to colorless or colored to colored. In order to broaden the color change range of thermochromic textiles and achieve multichromatic thermochromic color change, SiO2 shell thermochromic microcapsules with various colors were prepared and finished on cotton fabrics to obtain multichromatic thermochromic cotton fabrics.

Method In this research, tetraethyl orthosilicate was used as the silica source and fluorane-diphenyl sulfone-aliphatic alcohol as the core material to prepare multi-color SiO2 shell thermochromic microcapsules by sol-gel method. After blending and dyeing cotton fabrics, cotton fabrics with continuous chromatographic color change with temperature change were obtained. Scanning electron microscopy was adopted to observe the morphological features of microcapsules. The chemical structure of the microcapsules was characterized employing infrared spectroscopy. The thermal stability of the microcapsules was tested with a thermogravimetric analyzer. The color change of thermochromic cotton fabrics was characterized by colorimeter.

Results The SiO2 shell thermochromic microcapsules prepared by sol-gel method had uniform size dispersion and smooth surface (Fig. 2). The average particle size was about 0.9 μm (Fig. 3). The microcapsules demonstrated excellent thermal stability, where thermal degradation temperature was shown up to 200 ℃ (Fig. 5), much higher than daily service temperature. The microcapsules are finished onto the surface of the cotton fabric using the dip-roll method. After 50 heating-cooling cycles, the change of K/S value is only 0.01, showing the thermochromic microcapsules possess excellent thermal cycling durability (Fig. 7). The color change of cotton fabric in response to heat was still obvious. The excellent thermal stability and cycling durability could be attribute to fluorene, the developing agent, with sensitive color development, good stability and abundant color. The single-color change of thermochromic cotton fabric was obvious (Fig. 9), and the reflectance demonstrated an overall upward shift with temperature increasing, with the cotton fabric changing from colored to colorless (Fig. 8). It was possible to obtain thermochromic textiles with different color change temperatures by changing the solvent phase change point (Tab. 1). After different color-change thermochromic microcapsules of red, yellow and blue compound were coated onto the cotton fabric, the obtained multichromatic temperature sensitive color change cotton fabric was able to achieve step color change (Fig. 10). The color change performance of polychromatic color-change cotton was reliable and color change effect was obviously.

Conclusion Thermochromic microcapsules with SiO2 shell have been successfully prepared by sol-gel method on fluorane-diphenyl sulfone-aliphatic alcohol core material. The prepared thermochromic microcapsules indicate superb microscopic morphology and uniform size dispersion. The prepared thermochromic fabric has good thermal stability and thermal cycling durability and can meet the requirements of daily use, which broadens the temperature variation range of thermochromic cotton textiles. The prepared multichromatic thermochromic textiles can respond to temperature from 20 to 55 ℃. Since the prepared thermochromic cotton fabric can achieve gradient color change, it can be utilized to indicate the temperature. It is expected that the multichromatic thermochromic cotton fabrics would be employed in the fields of food safety for temperature indication to indicate suitable storage temperature. It also can be used on anti-counterfeiting and building for environmental temperature indication. However, further increase of the temperature sensing accuracy of thermochromic materials still need further attention. Compared to inorganic thermochromic materials, organic thermochromic materials is non-toxic, and excellent in temperature sensitivity and color density. However, the color change performance of organic reversible thermochromic materials in the high temperature region is still a major problem, which is a hot spot in future research.

Key words: microcapsule, multichromatism, thermochromic, cotton fabric, sol-gel method, silica


  • TS195.5













温敏变色芯材 TCMs-SiO2
HD 36~38 10 9 33~35 12 13
OD 53~55 16 12 48~50 13 14










质量比分别为1∶1∶0、1∶0∶1、1∶1∶1的R-OD-TCMs-SiO2、Y-HD-TCMs-SiO2、B-HD-TCMs-SiO2复 配染色棉织物在不同温度下的颜色变化"


多色谱温敏变色棉织物在25~55 ℃下的反射光谱"

[1] GENG X Y, GAO Y, WANG N, et.al. Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs[J]. Chemical Engineering Journal, 2021, 408: 127276-127292.
doi: 10.1016/j.cej.2020.127276
[2] WANG L, LI L, BIAN L R, et al. The novel thermochromic and energy-storage microcapsules with significant extension of color change range to different tones[J]. Journal of Macromolecular Science: Pure & Applied Chemistry, 2019, 56(6): 588-596.
[3] 冯文昭. 棉织物的温敏变色整理[D]. 天津: 天津工业大学, 2008: 15-20.
FENG Wenzhao. Thermochromic finishing of cotton fabrics[D]. Tianjin:Tiangong University, 2008: 15-20.
[4] WU Z L, MA X G, ZHENG X L, et al. Synthesis and characterization of thermochromic energy-storage microcapsule and application to fabric[J]. Journal of The Textile Institute, 2014, 105(4): 398-405.
doi: 10.1080/00405000.2013.814753
[5] 王成成, 龚筱丹, 王振, 等. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(5): 38-42.
WANG Chengcheng, GONG Xiaodan, WANG Zhen, et al. Preparation of highly sensitive temperature-sensitive color-changing microcapsules and their application to smart textiles[J]. Journal of Textile Research, 2022, 43(5): 38-42.
[6] SIMA W X, LI Z H, SUN P, et al. Thermochromic insulation materials for thermal sensing and overheat pre-warning[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(5): 1727-1734.
doi: 10.1109/TDEI.2022.3195124
[7] TOUZUM M S, ALKAN C, ALAY S A. Preparation of poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) walled thermochromic microcapsules and their application to cotton fabrics[J]. Journal of Applied Polymer Science, 2020, 137(24): 1-13.
[8] 耿丽霞. 正十二醇/二氧化硅微胶囊相变材料的制备及热物性研究[D]. 广州: 华南理工大学, 2017:34-50.
GENG Lixia. Preparation and thermophysical properties of n-dodecanol/silica microcapsule phase change materials[D]. Guangzhou: South China University of Technology, 2017:34-50.
[9] 罗瑞涟. 二氧化硅壳材微胶囊相变储能材料制备与性能研究[D]. 广州: 华南理工大学, 2016:35-40.
LUO Ruilian. Preparation and properties of silica shell microcapsule phase change energy storage mate-rials[D]. Guangzhou: South China University of Technology, 2016:35-40.
[10] 王亮, 马晓光, 李俊君, 等. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(9): 88-94.
WANG Liang, MA Xiaoguang, LI Junjun, et al. Color-changing chromatographic expansion of thermosensitive color-changing microcapsules and their applications[J]. Journal of Textile Research, 2020, 41(9): 88-94.
[11] TOUZUM M S, ALAY S A, ALKAN C. Microencapsulation of three-component thermochromic system for reversible color change and thermal energy storage[J]. Fibers and Polymers, 2018, 19(3): 660-669.
doi: 10.1007/s12221-018-7801-3
[12] ZHANG Y, LIU H, NIU J F, et al. Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management[J]. Applied Energy, 2020, 264: 114729-114751.
doi: 10.1016/j.apenergy.2020.114729
[13] 张婉. 电子离域效应型热致变色胶囊制备及性能[D]. 无锡: 江南大学, 2020: 36-55.
ZHANG Wan. Preparation and properties of electron delocalized thermochromic capsules[D]. Wuxi: Jiangnan University, 2020: 36-55.
[14] YIN D Z, LIU H, MA L, et al. Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in Pickering emulsion[J]. Polymers for Advanced Technologies, 2015, 26(6): 613-619.
doi: 10.1002/pat.v26.6
[15] WANG S J, WANG X, JIA B B, et al. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability[J]. Applied Surface Science, 2017, 392(1): 481-491.
doi: 10.1016/j.apsusc.2016.09.089
[16] GENG X Y, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217: 281-294.
doi: 10.1016/j.apenergy.2018.02.150
[17] GENG X Y, LI W, YIN Q, et al. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity[J]. Energy, 2018, 159: 857-869.
doi: 10.1016/j.energy.2018.06.218
[18] 冯丹. 隐色体染料ck-16与ck-67的光谱研究及应用[D]. 太原: 山西大学, 2015: 23-31.
FENG Dan. Spectral study and application of leuco dyes ck-16 and ck-67[D]. Taiyuan: Shanxi University, 2015:23-31.
[19] DENG Z W, CHEN M, ZHOU S X, et al. A novel method for the fabrication of monodisperse hollow silica spheres[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(14): 6403-6407.
doi: 10.1021/la060944n
[1] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[2] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[3] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[4] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[5] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[6] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[7] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[8] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[9] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[10] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[11] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[12] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
[13] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[14] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[15] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
Full text



No Suggested Reading articles found!