纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 57-63.doi: 10.13475/j.fzxb.20220405801

• 纺织工程 • 上一篇    下一篇

多色网点结构提花织物设计与色彩仿真评价

张爱丹1,2(), 郭珍妮1, 叶婧婧1   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省智能织物与柔性互联重点实验室, 浙江 杭州 310018
  • 收稿日期:2022-04-18 修回日期:2022-06-30 出版日期:2023-07-15 发布日期:2023-08-10
  • 作者简介:张爱丹(1979—),女,副教授,博士。主要研究方向为数码纺织品设计。E-mail:zad.andan@163.com
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J201802)

Design and color simulation evaluation of multi-color dot structured jacquard fabrics

ZHANG Aidan1,2(), GUO Zhenni1, YE Jingjing1   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou, Zhejiang 310018, China
  • Received:2022-04-18 Revised:2022-06-30 Published:2023-07-15 Online:2023-08-10

摘要:

为丰富和改善全彩型提花织物的色彩仿真效果,提出一种由多色网点叠加组合表现的彩色仿真提花织物设计模式。通过对全彩数码图像的原色分离产生多幅分色图,并将其逐一转化为二色值网点图,再重新组合成1幅8色以内的网点图像,结合重纬结构进行提花织物样品设计与织造。对织物样品进行多个测色点的颜色数据采集,并将其与原始数码图像进行色差比较分析。结果表明:相较于一般4色纬影光组织织物样品,多色网点结构提花织物的总色差均值降低了14.21%;进一步按明度值、红绿值和黄蓝值进行分项色差比较发现,多色网点结构提花织物的绿、红、蓝和黄等色值的色差均值分别降低了27.31%、19.72%、13.24%和9.65%,而明度差均值降低了12.88%,证明多色网点结构设计模式的可行性及其更理想的色彩仿真性能。

关键词: 多色网点, 提花织物, 色彩仿真, 设计模式, 色差, 仿真评价

Abstract:

Objective Shaded weaves are extensively used in the design of figured full-color simulation of jacquard fabrics, to the extent that this design pattern is solidified into a certain mind-set. In order to overcome this situation, a design method of multi-color dot superposition combination is proposed for motivating the diversified development of the design technology for color simulation jacquard fabrics.

Method The digital screen technology was adopted to discretize the digital color image with continuous tone into a multi-color dot image, which directly became the weave structure of a jacquard fabric. The multi-color dot image was composed of no more than 6 to 8 fixed colors (Fig. 1(b)). In order to investigate the color simulation performance of jacquard fabrics based on multi-color dot image, six jacquard fabric samples were woven by using two design method respectively for representing three different pictures (Fig. 3). Three color measurement point templates were designed for collecting the color data of the jacquard fabric samples (Fig. 4). The templates were fixed on the jacquard fabrics, and then the Lab values of each color measurement point were measured by using the American X-rite Color i7 desktop spectrophotometer. By comparative analyzing the color difference between the images of jacquard fabric samples and the original images, the color simulation performances of the jacquard fabric applying the multi-color dot image were demonstrated.

Results The average total color differences (ΔEab) among the six jacquard fabric samples and the corresponding original image were calculated (Tab. 2). The data of three multi-color dot structure jacquard fabrics was 14.31, 24.09 and 16.10, representing improved color simulation performance of 13.11%, 19.49% and 4.28% over that of shaded weave jacquard fabric images, respectively. In addition to comparing the total color difference of single jacquard fabrics, the measured color data of six jacquard fabrics were classified into two groups according to the two different design method of multi-color dot images and shaded weaves, and then comparatively analyzed in terms of lightness, total color difference, red value, green value, yellow value and blue value (Tab. 3). The six terms of color difference data of multi-color dot jacquard fabrics were reduced in varying degrees comparing with that of shaded weave jacquard fabrics. At last, the ΔEab between the color measurement points of the original images and the multi-color dot images were taken as the dependent variable, and the lightness, red-green value and yellow-blue value of all the color measurement points of the three original images were taken as the independent variables. The polynomial regression equation was used for fitting, the results (Fig. 6 and 7) showed that the color simulation effect of multi-color dot jacquard fabric was better for neutral color, medium brightness color and low saturation color, while the simulation effect of vivid, bright or extremely dark color was relatively not so well.

Conclusion According to the comparative investigations of the color differences of the images of the multi-color dot structure jacquard fabrics and that of the shaded weave jacquard fabrics, it proves that the jacquard fabrics by using the method of discretizing the continuous tone color image into a multi-color dot image can improve the color simulation performance. Because the color number of image is significantly reduced without obvious affecting the image color quality, the large number of fabric weaves are no longer needed, which realizes overcoming the limitations of fabric weave in color simulation and provides a new way for the design of color simulation jacquard fabrics. For expressing image color, the jacquard fabrics depend upon the design factor of weave but excessive reliance on the weave would also have a negative impact on the expression of image color, which is also worth thinking about.

Key words: multi-color dot, jacquard fabric, color simulation, design mode, color difference, simulation evaluation

中图分类号: 

  • TS145.1

图1

原图与其六色网点图像"

图2

彩色图像的四色网点化设计流程示意图"

图3

3幅原始图像"

图4

2种测色模版"

表1

测色模版设计参数"

模版
名称
外框尺寸/mm 测色点
影光 网点 直径/mm 间距/mm 数量/个
WP 251×175 248×182 6 20 117
XH 251×176 248×182 6 20 117
DC 234×184 232×190 6 20 99

图5

2组提花织物样品图"

表2

2组提花织物图像测色点的总色差均值"

织物
类别
图像测色点总色差均值
WP XH DC
影光组织织物 16.47 29.92 16.82
多色网点织物 14.31 24.09 16.10

表3

2组提花织物样品的6种色差数据"

织物类别 ΔEab ΔL Δa Δ-a Δb Δ-b
影光组织织物 21.39 11.18 5.02 17.10 8.50 10.20
多色网点织物 18.35 9.74 4.03 12.43 7.68 8.85

图6

根据明度值的总色差拟合"

图7

根据红绿值和黄蓝值的总色差拟合"

[1] 周赳, 屠永坚. 有彩数码提花织物结构设计的实践与分析[J]. 纺织学报, 2008, 29(4):54-57.
ZHOU Jiu, TU Yongjian. Practice and analysis of structural design for colorful digital jacquard fabric[J]. Journal of Textile Research, 2008, 29(4):54-57.
doi: 10.1177/004051755902900107
[2] ZHANG A, ZHOU J. Color rendering in single-layer jacquard fabrics using sateen shaded weave database based on three transition direction[J]. Textile Research Journal, 2018, 88(11):1290-1298.
doi: 10.1177/0040517517698989
[3] 张爱丹, 周赳. 全显色技术组织对三纬组合织物结构混色规律的影响[J]. 纺织学报, 2018, 39(10):44-49.
ZHANG Aidan, ZHOU Jiu. Influence of full-color weave on color mixing law of compound fabric structure with triple-weft[J]. Journal of Textile Research, 2018, 39 (10): 44-49.
[4] 周赳, 陆爽怿. 数码提花织物分层组合设计原理及其实践[J]. 纺织学报, 2020, 41(2):58-63.
ZHOU Jiu, LU Shuangyi. Design principal and practice of layered-combination mode for digital jacquard fabric[J]. Journal of Textile Research, 2020, 41(2):58-63.
[5] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
ZHANG Aidan, GUO Zhenni, WANG Yangzi. Comparative research on color simulation optimization of jacquard fabric based on modularized compound full-color structure[J]. Journal of Textile Research, 2021, 42(10): 67-74.
doi: 10.1177/004051757204200113
[6] KIM K, XIN J, ZENG L. CMYK channel modification to optimize optical yarn color mixing effects for multicolored jacquard artwork reproduction[J]. Textile Research Journal, 2022, 92(12-14):2357-2367.
doi: 10.1177/00405175221079655
[7] 张爱丹, 周赳. 聚集态网点结构提花织物的灰度仿真特性[J]. 纺织学报, 2020, 41(3):62-67.
ZHANG Aidan, ZHOU Jiu. Grayscale simulation characteristics of jacquard fabric with cluster-dotted structure[J]. Journal of Textile Research, 2020, 41(3):62-67.
[8] 张可桢. 扩散仿色显像彩色织锦的制作方法:201110060623.4[P]. 2013-03-20.
ZHANG Kezhen. Diffusion color rendering color fulbrocade production method: 201110060623.4[P]. 2013-03-20.
[9] 张爱丹, 周赳. 基于图像色网点化设计的织物结构呈色特征[J]. 纺织学报, 2019, 40 (9):56-61.
ZHANG Aidan, ZHOU Jiu. Color rendering characteristics of fabric structure based on halftone design of image color[J]. Journal of Textile Research. 2019, 40(9):56-61.
[10] 涂润. 数字加网技术在印刷复制上的应用研究[J]. 云南化工, 2018, 45(3):25-26.
TU Run. Research on the application of digital screening technology in printing and reproduction[J]. Yunnan Chemical Technology, 2018, 45 (3):25-26.
[11] 姚海根, 程鹏飞. 半色调技术[M]. 北京: 印刷工业出版社, 2013:58.
YAO Haigen, CHENG Pengfei. Digital halftoning technology[M]. Beijing: Printing Industry Press, 2013:58.
[1] 周赳, 胡伊丽. 等经浮长的三纬组合全显结构设计与应用[J]. 纺织学报, 2023, 44(06): 78-84.
[2] 胡伊丽, 周赳. 三纬组合全显结构起始点位置设置对织物显色的影响[J]. 纺织学报, 2023, 44(04): 78-85.
[3] 程璐, 马崇启, 周惠敏, 王颖, 夏鑫. 基于视觉特性的色纺纱全光谱配色算法优化[J]. 纺织学报, 2022, 43(10): 38-44.
[4] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[5] 张萌, 周赳. 附加纬接结的双层全显色结构设计原理和方法[J]. 纺织学报, 2022, 43(03): 83-88.
[6] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
[7] 陆爽怿, 周赳. 单经双纬组合全显色提花织物的结构交织平衡特征[J]. 纺织学报, 2021, 42(09): 59-65.
[8] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[9] 郑培晓, 蒋高明. 基于WebGL的纬编提花织物三维仿真[J]. 纺织学报, 2021, 42(05): 59-65.
[10] 裘柯槟, 陈维国, 周华. 用光谱成像技术与分光光度法测量织物颜色的比较分析[J]. 纺织学报, 2020, 41(11): 73-80.
[11] 彭稀, 周赳. 中国古代织锦重组织结构的特征及其演变规律[J]. 纺织学报, 2020, 41(09): 67-75.
[12] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[13] 应双双, 裘柯槟, 郭宇飞, 周赳, 周华. 纺织品色彩管理色表测量数据的误差优化[J]. 纺织学报, 2020, 41(08): 74-80.
[14] 张戈, 周建, 王蕾, 潘如如, 高卫东. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(04): 72-77.
[15] 张爱丹, 周赳. 聚集态网点结构提花织物的灰度仿真特性[J]. 纺织学报, 2020, 41(03): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!