纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 63-72.doi: 10.13475/j.fzxb.20231105801

• 纤维材料 • 上一篇    下一篇

聚乳酸纤维气凝胶制备及其辐射制冷性能

谭文萍1, 张硕1, 张倩2, 张寅1, 刘润政1, 黄晓卫1, 明津法1,3,4()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学附属妇女儿童医院, 山东 青岛 266000
    3.青岛大学 非织造材料与产业用纺织品创新研究院, 山东 青岛 266071
    4.滨州魏桥国科高等技术研究院, 山东 滨州 256606
  • 收稿日期:2023-11-28 修回日期:2025-03-12 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 明津法(1984—),男,副教授,博士。主要研究方向为非织造材料开发。E-mail:mingjinfa@qdu.edu.cn
  • 作者简介:谭文萍(1997—),女,硕士生。主要研究方向为非织造材料开发。
  • 基金资助:
    生物多糖纤维成形与生态纺织国家重点实验室开放课题(RZ2000003348);生物多糖纤维成形与生态纺织国家重点实验室开放课题(ZDKT202109);教育部产学研协同育人项目(BINTECH-KJZX-20220831-17)

Preparation and radiation refrigeration properties of polylactic acid fiber aerogel

TAN Wenping1, ZHANG Shuo1, ZHANG Qian2, ZHANG Yin1, LIU Runzheng1, HUANG Xiaowei1, MING Jinfa1,3,4()   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, China
    3. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    4. Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, China
  • Received:2023-11-28 Revised:2025-03-12 Published:2025-06-15 Online:2025-07-02

摘要: 为拓展聚乳酸(PLA)气凝胶在辐射制冷领域的应用潜力,以左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)为原料,通过湿法纺丝制备立构PLLA/PDLA纤维,经氧化铝(Al2O3)修饰和冷冻干燥技术获得结构稳定的PLLA/PDLA/Al2O3纤维气凝胶。对气凝胶的形貌、化学结构、压缩力学性能、亲疏水性、辐射制冷性能等进行研究。结果表明:气凝胶具有明显的孔洞结构,且纤维之间产生化学交联;在Al2O3修饰后,当气凝胶内Al2O3质量分数增加到15.0%时,纤维表面黏附更多的Al2O3颗粒,气凝胶水接触角下降至128.3°,仍保持良好疏水性能;在压缩应变为60%时,气凝胶应力达16.71 kPa;其户外辐射制冷测试显示,气凝胶平均反射率为81.91%,平均发射率为96.24%,展现出较强的红外辐射能力。

关键词: 聚乳酸, 气凝胶, 湿法纺丝, 冷冻干燥, 辐射制冷

Abstract:

Objective Global climate change and extreme weather have increased energy demand for refrigeration. The traditional refrigeration equipment not only consumes a lot of energy in the refrigeration process, but also brings additional heat consumption, further aggravating the urban heat island effect and energy crisis. With the growing concern for energy efficiency, and the key goal of carbon neutrality, much attention has been paid to zero-energy refrigeration technology. Hence, it is imperative to design an environmentally friendly radiation refrigeration material and to devise new refrigeration methods.

Method Poly(L-latic acid)(PLLA) and PLLA/poly(D-latic acid)(PDLA) fiber filaments were prepared by wet spinning technology, and then the fiber filaments were dispersed into uniform fiber dispersion liquid by high-speed shear emulsifier. PLLA and fiber aerogel modified by hydrophilic Al2O3 particles were prepared by chemical crosslinking of methyl trimethoxysilane under acidic conditions, modification of hydrophilic Al2O3 particles, ice crystal growth and freeze drying. The morphology of fiber and fiber aerogel was analyzed by scanning electron microscopy (SEM). The chemical properties of the samples were analyzed by Fourier infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and differential scanning calorimeter(DSC). The physical properties of aerogel were analyzed by material testing machine and water contact angle analyzer. Finally, the emittance, reflectance and radiation cooling effect were analyzed by infrared spectroscopy with gold integrating sphere, ultraviolet-visible-near infrared spectrophotometer and homemade outdoor device.

Results The optimum parameters for preparing PLLA/PDLA microfibers by wet spinning were obtained by testing the apparent viscosity and structural viscosity index of the spinning solution. The mass ratio of PLLA/PDLA was 10∶0 and 9∶1 and the concentration of the spinning solution was 10%. Under these parameters, smooth and uniform PLLA and PLLA/PDLA microfibers with diameter of (7.914±0.07) μm and (6.39±0.06) μm were successfully prepared. The stereo-polylactic acid fibers have been successfully prepared by wet spinning by FT-IR and DSC analysis. After ice crystal growth and freeze-drying technology, the porous fiber aerogels modified by Al2O3 particles were successfully prepared. With the increase of Al2O3 particle concentration, the coverage rate of Al2O3 on the surface of the aerogels increased. At the same time, the presence of C—O and C—O/H, and C—Si bonds were observed at the peaks of binding energy at 289.0, 286.9 and 284.8 eV. The presence of O—C—O, O—Si and bonds were observed at the peak binding energies at 533.7, 532.6 and 532.2 eV, and the Si—O and Si—C bonds in methyltrimethoxysilane(MTMS) were observed at 103.4 eV and 102.7 eV. At the same time, the presence of Al2p and low energy characteristic peaks were observed at the binding energies of 74.57 eV and 73.68 eV, which prove that the aerogel has formed a stable cross-linked network. Fiber aerogel has excellent hydrophobic and mechanical properties, and the stress of fiber aerogel was increased from 9.84 kPa to 16.71 kPa with the increasing Al2O3 contents from 5% to 15% under 60% compression. In the radiation refrigeration performance test, the reflectivity and emissivity of PLLA/PDLA aerogel were higher than that of PLLA aerogel, and when the Al2O3 content in the fiber aerogel was increased to 5.0%, the reflectivity reached the highest (81.91%), and the emissivity reached 96.18%.

Conclusion PLLA/PDLA fibers were prepared by wet spinning. The fibers were uniform, smooth and with a diameter of (6.39±0.06) μm. The fiber aerogel with stable structure was obtained by Al2O3 modification and freeze-drying. When the Al2O3 content in the fiber aerogel was gradually increased from 5.0% to 15.0%, the water contact angle of the fiber aerogel decreased from 153.6° to 128.31°. At the same time, the stress of the fiber aerogel increased from 9.84 kPa to 16.71 kPa under 60% compression. After outdoor radiation refrigeration effect test, it was found that the highest average reflectivity of fiber aerogel was 81.91%, the highest average emissivity was 96.24%, the maximum outdoor daytime (10:30-13:30) cooling temperature was up to 3.6 ℃, and the maximum outdoor night (18:00-21:00) cooling temperature was up to 4.7 ℃, showing strong infrared radiation ability.

Key words: polylactic acid, aerogel, wet spinning, freeze-drying, radiation refrigeration

中图分类号: 

  • TS171

表1

气凝胶样品编号"

试样编号 PLLA与PDLA质量比 Al2O3质量分数/%
A-1 10∶0 0
A-2 9∶1 0
A-3 9∶1 5.0
A-4 9∶1 10.0
A-5 9∶1 15.0

图1

PDLA用量对纺丝液表观黏度的影响"

图2

微米纤维的宏观形貌实物照片"

图3

试样1和试样2的微观形貌照片"

图4

PLLA、PLLA/PPLA微米纤维的红外光谱图、X射线衍射图谱和DSC曲线"

图5

不同气凝胶的扫描电镜照片"

图6

含Al2O3的纤维气凝胶XPS谱图"

图7

不同气凝胶的表面浸润性能"

图8

不同气凝胶的压缩性能"

表2

能量损耗系数及弹性模量对比"

试样
编号
密度/
(g·cm-3)
孔隙
率/%
弹性模
量/kPa
能量损耗系
数/%
A-2 29.8±0.67 89.6±1.48 6.67 67.11±2.7
A-3 31.4±0.32 88.5±2.11 8.88 72.17±1.1
A-4 33.1±0.83 88.2±1.46 10.75 72.41±1.8
A-5 35.8±0.41 87.8±1.28 12.44 72.48±2.3

图9

辐射制冷机制及试样制冷效果"

图10

A-3 试样辐射制冷环境实测表征图"

[1] 汤丰丞, 张伟, 戴家木, 等. 辐射制冷纺织材料的研究进展[J]. 棉纺织技术, 2023, 51(2):76-80.
TANG Fengcheng, ZHANG Wei, DAI Jiamu, et al. Research progress of radiation cooling textile material[J]. Cotton Textile Technology, 2023, 51(2): 76-80.
[2] SHI M, SONG Z, NI J, et al. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating[J]. ACS Nano, 2023, 17(3): 2029-2038.
doi: 10.1021/acsnano.2c07293 pmid: 36638216
[3] ZHONG S, YUAN S, ZHANG X, et al. Gierarchical cellulose aerogel reinforced with in situ-assembled cellulose nanofibers for building cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(33): 39807-39817.
[4] XIONG L, WEI Y, CHEN C, et al. Thin lamellar films with enhanced mechanical properties for durable radiative cooling[J]. Nature Communications, 2023, 14(1): 1-9.
[5] SHAN X, LIU L, WU Y, et al. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science, 2022. DOI: 10.1002/advs.202201190.
[6] 吕婧, 刘增伟, 程青青, 等. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(6): 10-20.
LÜ Jing, LIU Zengwei, CHENG Qingqing, et al. Research progress of aramid nanofiber aerogels[J]. Journal of Textile Research, 2023, 44(6): 10-20.
[7] 柳敦雷, 陆佳颖, 薛甜甜, 等. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(7):18-25.
LIU Dunlei, LU Jiaying, XUE Tiantian, et al. Preparation and properties of superhydrophobic thermal insulating polyester nanofiber/silica aerogel composite membranes[J]. Journal of Textile Research, 2023, 44(7): 18-25.
[8] 高国金, 谭文萍, 张倩, 等. PEI@PLA气凝胶制备及其染料吸附性能研究[J]. 棉纺织技术, 2024, 52(2):8-16.
GAO Guojin, TAN Wenping, ZHANG Qian, et al. Preparation and dye adsorption properties of PEI@PLA aerogels[J]. Cotton Textile Technology, 2024, 52(2):8-16.
[9] 涂学敏. 丙烯腈与衣康酸二元共聚物纺丝溶液的流变性能研究[D]. 上海: 华东理工大学, 2012:19-21.
TU Xuemin. Study on rheological properties of spinning solution of acrylonitrile and itaconic acid binary copolymer[D]. Shanghai: East China University of Science and Technology,2012:19-21.
[10] 荆为龙. 聚合物/无机颗粒复合纤维膜的制备及其辐射制冷性能研究[D]. 青岛: 青岛科技大学,2022:26.
JING Weilong. Preparation of polymer/inorganic particle composite fiber film and its radiative refrigeration performance[D]. Qingdao: Qingdao University of Science and Technology,2022:26.
[11] 曾文超, 孙浩东, 张宗威, 等. 壳聚糖/聚乙烯醇的流变行为及其可纺性研究[J]. 林产化学与工业, 2023, 43(5):25-31.
ZENG Wenchao, SUN Haodong, ZHANG Zongwei, et al. Rheological behavior and spinnability of chitosan/polyvinyl alcohol[J]. Chemistry and Industry of Forest Products, 2023, 43(5):25-31.
[12] MAZUKI N F, NAGAO Y, KUFIAN M Z, et al. The influences of PLA into PMMA on crystallinity and thermal properties enhancement-based hybrid polymer in gel properties[J]. Materials Today: Proceedings, 2022, 49: 3105-3111.
[13] TSUJI H, ARAKAWA Y. Synthesis, properties, and crystallization of the alternating stereocopolymer poly (L-lactic acid-alt-d-lactic acid)[syndiotactic poly (lactic acid)] and its blend with isotactic poly (lactic acid)[J]. Polymer Chemistry, 2018, 9(18): 2446-2457.
[14] HERRERA-KAO W A, LORǏA-BASTARRACHE M I, PÉREZ-PADILLA Y, et al. Thermal degradation of poly (caprolactone), poly (lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques[J]. Polymer Bulletin, 2018, 75: 4191-4205.
[15] KASPRZHITSKII A, LAZORENKO G, KRUGLIKOV A, et al. Effect of silane functionalization on properties of poly (lactic acid)/palygorskite nanocomposites[J]. Inorganics, 2021. DOI:10.3390/inorganics9010003.
[16] 刘天宇, 高琪琪. 左旋聚乳酸/右旋聚乳酸立构复合晶体形状记忆聚合物的制备与性能[J]. 高分子材料科学与工程, 2021, 37(3): 176-183.
LIU Tianyu, GAO Qiqi. Preparation and properties of L-polylactic acid/D-polylactic acid stereo-composite crystal shape memory polymers[J]. Polymer Materials Science and Engineering, 2021, 37(3):176-183.
[17] PAN P, YANG J, SHAN G, et al. Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly (L-lactide) and poly (L-lactide)/poly (D-lactide) stereocomplex[J]. Macromolecules, 2012, 45(1): 189-197.
[18] WANG C, YANG H, CHEN F, et al. Influences of VTMS/SiO2 ratios on the contact angle and morphology of modified super-hydrophobic silicon dioxide material by vinyl trimethoxy silane[J]. Results in Physics, 2018, 10: 891-902.
[19] RENO F, D'ANGELO D, GOTTARDI G, et al. Atmospheric pressure plasma surface modification of poly(D, L-lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation[J]. Plasma Processes and Polymers, 2012, 9(5): 491-502.
[20] MRSIC I, BAEUERLE T, ULITZSCH S, et al. Oxygen plasma surface treatment of polymer films: pellethane 55DE and EPR-g-VTMS[J]. Applied Surface Science, 2021, 536: DOI: 10.1016/j.apsusc.2020.147782.
[21] FAN L L, QUAN J Y, ZHANG H, et al. Preparation of hydrophilic UHMWPE hollow fiber membranes by chemically bounding silica nanoparticles[J]. Chinese Journal of Polymer Science, 2021, 39: 189-200.
[22] REDDY N, BERA P, REDDY V R, et al. XPS study of sputtered alumina thin films[J]. Ceramics International, 2014, 40(7): 11099-11107.
[23] CAI C, WEI Z, DING C, et al. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building[J]. Nano Letters, 2022, 22(10): 4106-4114.
doi: 10.1021/acs.nanolett.2c00844 pmid: 35510868
[1] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[2] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[3] 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10.
[4] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[5] 张文丽, 刘鑫, 张俏俏, 支超, 李建伟, 樊威. 基于废旧亚麻织物的超弹性气凝胶制备及其性能[J]. 纺织学报, 2025, 46(04): 47-55.
[6] 张惠琴, 吴改红, 刘霞, 刘淑强, 赵恒, 刘涛. 生物可降解聚乳酸防护口罩的开发及性能评估[J]. 纺织学报, 2025, 46(03): 116-122.
[7] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[8] 乔思杰, 邢桐贺, 童爱心, 史芷丞, 潘恒, 刘可帅, 余豪, 陈凤翔. 不同聚乳酸材料的性能对比[J]. 纺织学报, 2025, 46(03): 27-33.
[9] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[10] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
[11] 赵珂, 张恒, 程文胜, 甄琪, 步青云, 崔景强. 类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 51-60.
[12] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[13] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[14] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[15] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!