纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 56-62.doi: 10.13475/j.fzxb.20241202502

• 纤维新材料与纺织绿色发展青年科学家沙龙专栏 • 上一篇    下一篇

面向渗透能收集的纤维素纳米流体系统研究进展

丁振华1,2, 袁开宇2, 周敬2, 叶冬冬2()   

  1. 1.安徽省产品质量监督检验研究院, 安徽 合肥 230051
    2.安徽农业大学 材料与化学学院, 安徽 合肥 230036
  • 收稿日期:2024-12-13 修回日期:2025-03-27 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 叶冬冬(1990—),男,教授,博士。主要研究方向为生物质可持续材料。E-mail:ydd@whu.edu.cn
  • 作者简介:丁振华(1981—),男,高级工程师,硕士。主要研究方向为检验检测与认证标准化。
  • 基金资助:
    国家自然科学基金项目(52473090);安徽省优秀青年基金项目(2408085Y025);国家市场监管总局技术保障专项(2020YJ016)

Research progress in cellulose nanofluid systems for osmotic energy harvesting

DING Zhenhua1,2, YUAN Kaiyu2, ZHOU Jing2, YE Dongdong2()   

  1. 1. Anhui Institute of Product Quality Supervision and Inspection, Hefei, Anhui 230051, China
    2. School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
  • Received:2024-12-13 Revised:2025-03-27 Published:2025-06-15 Online:2025-07-02

摘要:

渗透能对环境的依赖较低,且能提供稳定的能量输出,离子选择性材料是渗透能收集技术的核心。综述了纤维素基材料的3类构建策略:基于木材本征形态的加工成形策略,“自上而下”的化学处理或机械剥离纳米纤维/纳米晶成形策略,以及“自下而上”的纤维素溶解再生策略。讨论了基于这些策略下的改性技术,从多角度探讨将纤维素构建成纳米流体材料的过程,旨在制备用于离子管理的具有高离子选择性和高离子通量的纳米流体材料。最后对纤维素在离子传输领域的未来应用进行展望,并分析了实现大规模应用的优势及面临的挑战。

关键词: 纤维素, 纳米纤维, 纳米流体, 离子传输, 渗透能收集

Abstract:

Significance The significant osmotic pressure difference between river water and seawater presents a promising and renewable energy source ready for development. Unlike other renewable energies such as wind, solar, and tidal energy, osmotic energy depends less on environmental conditions and can offer a stable energy output. Efficient collection and utilization of osmotic energy can help reduce energy supply pressures. Ion-selective materials are crucial for osmotic energy harvesting technologies. Cellulose, the most abundant and widely distributed polysaccharide in nature, is notable for its plentiful availability and low cost. Its ease of modification and diverse processing techniques have contributed to its extensive application across various industries. Modified cellulose, with its abundant surface charges, can be processed into desired structures in a controlled manner, making it highly applicable in the field of osmotic energy harvesting.

Progress Cellulose is a versatile biopolymer commonly derived from wood, cotton, and bacterial cultures. Cellulose nanofluid systems with nanochannels that match double-layer thickness, high charge density, and elevated ion transport flux demonstrate ionic conductivities significantly surpassing bulk solutions at very low salt concentrations. This property grants the system high sensitivity and responsiveness to changes in solution concentration driven by pressure, temperature, and material composition, resulting in enhanced osmotic energy harvesting performance under 50-fold salinity gradients. Wood is particularly notable due to its naturally oriented structure and distinct porous cross-section, which can be manipulated through twisting and compressing to densify micropores to the nanoscale, which is ideal for ion transport control. Modification treatments like N-oxo-1,2,2,6,6-pentamethylpiperidine-N-oxyl(TEMPO) oxidation or quaternization enhance the wood's ion management capabilities by imparting a rich surface charge. Techniques such as crushing and acid hydrolysis break down macro-sized wood and cotton into nanofiber structures, which can be processed into nanofluid membranes for improved ion transport. These nanofibers can be combined with two-dimensional materials like MXenes to enhance ion management and reduce production costs. The NaOH/urea/water dissolved regenerated cellulose system is gaining traction, producing highly ordered and closely packed porous structures that create shorter ion transport pathways. The combination of cellulose's surface charges and functional materials facilitates directed ion transport, making cellulose a versatile solution for various applications.

Conclusion and Prospect Cellulose is an eco-friendly natural polymer with significant potential in ion management due to its renewability, sustainability, and low cost. Found abundantly in plants, cellulose's hydroxyl groups allow for easy modification, providing diverse surface charges to regulate ion transport. Its versatility supports osmotic energy harvesting, desalination, ion monitoring, and energy storage applications. Challenges include its crystalline structure limiting ion migration speed and hydrophilicity, which potentially reduce performance in aquatic environments. Recent advancements like ion coordination improve performance primarily in cellulose nanofibers. Continuous research and new construction strategies aim to enhance cellulose's role in high-performance material applications.

Key words: cellulose, nanofiber, nanofluid, ion transport, osmotic energy harvesting

中图分类号: 

  • TQ314.1

图1

多孔木材的改性方法以实现离子传输"

图2

用于渗透能收集的纳米纤维素组装方法"

图3

纤维素溶液示意图以及常见有序化再生方法"

[1] ARAMENDIA E, BROCKWAY P, TAYLOR P, et al. Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems[J]. Nature Energy, 2024, 9(7): 803-816.
[2] SINCLAIR K, COPPING A, MAY R, et al. Resolving environmental effects of wind energy[J]. WIREs Energy and Environment, 2018. DOI: 10.1002/wene.291.
[3] SAMU R, FAHRIOGLU M. An analysis on the potential of solar photovoltaic power[J]. Energy Sources, Part B: Economics, Planning, and Polic, 2017, 12(10): 883-899.
[4] WAGNER B, HAUER C, HABERSACK H. Current hydropower developments in Europe[J]. Current Opinion in Environmental Sustainability, 2019, 37: 41-49.
doi: 10.1016/j.cosust.2019.06.002
[5] LI S, WANG J, LV Y, et al. Nanomaterials-based nanochannel membrane for osmotic energy harves-ting[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202308176.
[6] ZHANG Z, WEN L, JIANG L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7): 622-639.
[7] HOU Q, DAI Y, ZHANG X, et al. Commercial nafion membranes for harvesting osmotic energy from proton gradients that exceed the commercial goal of 5.0 W/m2[J]. ACS Nano, 2024, 18(19): 12580-12587.
doi: 10.1021/acsnano.4c04152 pmid: 38696339
[8] HAN J, KO Y, NAM Y, et al. Thermally enhanced osmotic power generation from salinity difference[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121451.
[9] GUO Y, SUN X, DING S, et al. Charge-gradient sulfonated poly(ether ether ketone) membrane with enhanced ion selectivity for osmotic energy conver-sion[J]. ACS Nano, 2024, 18(9): 7161-7169.
[10] XIANG Z, CHEN Y, XIE Z, et al. Sustainable chitin-derived 2D nanosheets with hierarchical ion transport for osmotic energy harvesting[J]. Advanced Energy Materials, 2024. DOI: 10.1002/aenm.202402304.
[11] LIN C, HAO J, ZHAO J, et al. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting[J]. Journal of Colloid and Interface Science, 2024, 654: 840-847.
[12] ZHANG Z, SHEN W, LIN L, et al. Vertically transported graphene oxide for high-performance osmotic energy conversion[J]. Advanced Science, 2020. DOI: 10.1002/advs.202000286.
[13] CHANG L, XIAO X. The review of MXenes for osmotic energy harvesting: synthesis and properties[J]. Diamond and Related Materials, 2023. DOI: 10.1016/j.diamond.2023.109971.
[14] WANG C, TANG J, LI L, et al. Ultrathin self-standing covalent organic frameworks toward highly-efficient nanofluidic osmotic energy generator[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202204068.
[15] CHEN C, BERGLUND L, BURGERT I, et al. Wood nanomaterials and nanotechnologies[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202006207.
[16] WU C, LI J, ZHANG Y, et al. Cellulose dissolution, modification, and the derived hydrogel: a review[J]. ChemSusChem, 2023. DOI: 10.1002/cssc.202300518.
[17] SHI J, SUN X, ZHANG Y, et al. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting[J]. Carbohydrate Polymers, 2024. DOI: 10.1016/j.carbpol.2023.121656.
[18] ROCHA A, VENTURIM B, ELLWANGER E, et al. Bacterial cellulose: strategies for its production in the context of bioeconomy[J]. Journal of Basic Microbiology, 2023, 63(3/4): 257-275.
[19] HE S, ZHAO X, WANG E, et al. Engineered wood: sustainable technologies and applications[J]. Annual Review of Materials Research, 2023, 53: 195-223.
[20] JIA C, CHEN C, KUANG Y, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201801347.
[21] TU H, LI X, LIU Y, et al. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2022.119942.
[22] MAO Y, HU L, REN Z. Engineered wood for a sustainable future[J]. Matter, 2022, 5(5): 1326-1329.
[23] WANG H, CHEN C, FANG L, et al. Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood[J]. Cellulose, 2018, 25(12): 7003-7015.
[24] LI T, ZHANG X, LACEY S, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
doi: 10.1038/s41563-019-0315-6 pmid: 30911121
[25] CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201902772.
[26] ATALLA R. The role of the hemicelluloses in the nanobiology of wood cell walls: a systems theoretic perspective[J]. Proceedings of the hemicelluloses workshop, 2005, 10-12: 37-57.
[27] KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200.
[28] CHEN C, LIU D, HE L, et al. Bio-inspired nanocomposite membranes for osmotic energy harves-ting[J]. Joule, 2020, 4(1): 247-261.
[29] ZHANG J, HU Z, HOU Y, et al. Wood hydrogel for efficient moisture-electric generation[J]. ACS Applied Polymer Materials, 2024, 6(15): 8856-8865.
[30] WU Q, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.201902590.
[31] LIU S, YAO Y, LI X, et al. Wood ion pumps enabled by light-responsive MoS2-decorated nanocellulosic channels[J]. ACS Nano, 2024, 18(31): 20353-20362.
[32] YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596.
[33] DONG Q, ZHANG X, QIAN J, et al. A cellulose-derived supramolecule for fast ion transport[J]. Science Advances, 2022. DOI: 10.1126/sciadv.add2031.
[34] ISOGAI A, ZHOU Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 101-106.
[35] LEE J C, LEE J A, LIM D, et al. Fabrication of cellulose nanofiber reinforced thermoplastic compo-sites[J]. Fibers and Polymers, 2018, 19(8): 1753-1759.
[36] LI B, SUN K, XU W, et al. Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems[J]. Nano Research, 2023, 16(5): 6039-6047.
[37] LIANG C, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ″mortar/brick″ structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622.
[38] JIA X, ZHANG M, ZHANG Y, et al. Enhanced selective ion transport in highly charged bacterial cellulose/boron nitride composite membranes for thermo-osmotic energy harvesting[J]. Nano Letters, 2024, 24(7): 2218-2225.
[39] LI W, ZHOU T, ZHANG Z, et al. Ultrastrong MXene film induced by sequential bridging with liquid metal[J]. Science, 2024, 385(6704): 62-68.
doi: 10.1126/science.ado4257 pmid: 38963844
[40] WU Z, JI P, WANG B, et al. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harves-ting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105554.
[41] YUAN Z, ZHOU B, YUAN K, et al. High-aligned oppositely-charged nanocellulose/MXene aerogel membranes through synergy of directional freeze-casting and structural densification for osmotic-energy harves-ting[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109450.
[42] LIN Z, FU X, YANG T, et al. Customizable twisted nanofluidic cellulose fibers by asymmetric microfluidics for self-powered urine monitoring[J]. Advanced Functional Materials, 2025. DOI: 10.1002/adfm.202414365.
[43] CAI J, ZHANG L, ZHOU J, et al. Novel fibers prepared from cellulose in NaOH/urea aqueous solution[J]. Macromolecular Rapid Communications, 2004, 25(17): 1558-1562.
[44] TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202000682.
[45] VÁZQUEZ M, DE L, BENAVENTE J. Transport and elastic parameters for dense regenerated cellulose membranes[J]. Desalination, 2009, 245(1): 579-586.
[46] HUANG H, DU Z, HUANG X, et al. Development of enhanced multiwalled carbon nanotube (MWCNT) conductive polymeric nanocomposites by using acidified derivative of MWCNT as dispersant[J]. Journal of Applied Physics, 2020. DOI: 10.1063/1.5130651.
[47] ZHOU B, ZOU J, LIN Z, et al. Aligned regenerated cellulose-based nanofluidic fibers with ultrahigh ionic conductivity and underwater stability for osmotic energy harvesting[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.141167.
[48] ZHOU B, LIN Z, XIE Z, et al. Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108693.
[49] XIE Z, XIANG Z, FU X, et al. Decoupled ionic and electronic pathways for enhanced osmotic energy harvesting[J]. ACS Energy Letters, 2024, 9(5): 2092-2100.
[1] 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55.
[2] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[3] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[4] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[5] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[6] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[7] 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10.
[8] 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19.
[9] 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234.
[10] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[11] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[12] 陆宁, 陈碧泠, 宋功吉, 罗忆心, 王建南, 许建梅. 纳米纤维在人工神经导管中的应用与研究进展[J]. 纺织学报, 2025, 46(03): 236-244.
[13] 张帆, 程春祖, 郭翠彬, 张东, 程敏, 李婷, 徐纪刚. Lyocell纤维直接成网工艺优化与性能分析[J]. 纺织学报, 2025, 46(03): 34-40.
[14] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[15] 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!