纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 56-62.doi: 10.13475/j.fzxb.20241202502
• 纤维新材料与纺织绿色发展青年科学家沙龙专栏 • 上一篇 下一篇
DING Zhenhua1,2, YUAN Kaiyu2, ZHOU Jing2, YE Dongdong2(
)
摘要:
渗透能对环境的依赖较低,且能提供稳定的能量输出,离子选择性材料是渗透能收集技术的核心。综述了纤维素基材料的3类构建策略:基于木材本征形态的加工成形策略,“自上而下”的化学处理或机械剥离纳米纤维/纳米晶成形策略,以及“自下而上”的纤维素溶解再生策略。讨论了基于这些策略下的改性技术,从多角度探讨将纤维素构建成纳米流体材料的过程,旨在制备用于离子管理的具有高离子选择性和高离子通量的纳米流体材料。最后对纤维素在离子传输领域的未来应用进行展望,并分析了实现大规模应用的优势及面临的挑战。
中图分类号:
| [1] | ARAMENDIA E, BROCKWAY P, TAYLOR P, et al. Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems[J]. Nature Energy, 2024, 9(7): 803-816. |
| [2] | SINCLAIR K, COPPING A, MAY R, et al. Resolving environmental effects of wind energy[J]. WIREs Energy and Environment, 2018. DOI: 10.1002/wene.291. |
| [3] | SAMU R, FAHRIOGLU M. An analysis on the potential of solar photovoltaic power[J]. Energy Sources, Part B: Economics, Planning, and Polic, 2017, 12(10): 883-899. |
| [4] |
WAGNER B, HAUER C, HABERSACK H. Current hydropower developments in Europe[J]. Current Opinion in Environmental Sustainability, 2019, 37: 41-49.
doi: 10.1016/j.cosust.2019.06.002 |
| [5] | LI S, WANG J, LV Y, et al. Nanomaterials-based nanochannel membrane for osmotic energy harves-ting[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202308176. |
| [6] | ZHANG Z, WEN L, JIANG L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7): 622-639. |
| [7] |
HOU Q, DAI Y, ZHANG X, et al. Commercial nafion membranes for harvesting osmotic energy from proton gradients that exceed the commercial goal of 5.0 W/m2[J]. ACS Nano, 2024, 18(19): 12580-12587.
doi: 10.1021/acsnano.4c04152 pmid: 38696339 |
| [8] | HAN J, KO Y, NAM Y, et al. Thermally enhanced osmotic power generation from salinity difference[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121451. |
| [9] | GUO Y, SUN X, DING S, et al. Charge-gradient sulfonated poly(ether ether ketone) membrane with enhanced ion selectivity for osmotic energy conver-sion[J]. ACS Nano, 2024, 18(9): 7161-7169. |
| [10] | XIANG Z, CHEN Y, XIE Z, et al. Sustainable chitin-derived 2D nanosheets with hierarchical ion transport for osmotic energy harvesting[J]. Advanced Energy Materials, 2024. DOI: 10.1002/aenm.202402304. |
| [11] | LIN C, HAO J, ZHAO J, et al. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting[J]. Journal of Colloid and Interface Science, 2024, 654: 840-847. |
| [12] | ZHANG Z, SHEN W, LIN L, et al. Vertically transported graphene oxide for high-performance osmotic energy conversion[J]. Advanced Science, 2020. DOI: 10.1002/advs.202000286. |
| [13] | CHANG L, XIAO X. The review of MXenes for osmotic energy harvesting: synthesis and properties[J]. Diamond and Related Materials, 2023. DOI: 10.1016/j.diamond.2023.109971. |
| [14] | WANG C, TANG J, LI L, et al. Ultrathin self-standing covalent organic frameworks toward highly-efficient nanofluidic osmotic energy generator[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202204068. |
| [15] | CHEN C, BERGLUND L, BURGERT I, et al. Wood nanomaterials and nanotechnologies[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202006207. |
| [16] | WU C, LI J, ZHANG Y, et al. Cellulose dissolution, modification, and the derived hydrogel: a review[J]. ChemSusChem, 2023. DOI: 10.1002/cssc.202300518. |
| [17] | SHI J, SUN X, ZHANG Y, et al. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting[J]. Carbohydrate Polymers, 2024. DOI: 10.1016/j.carbpol.2023.121656. |
| [18] | ROCHA A, VENTURIM B, ELLWANGER E, et al. Bacterial cellulose: strategies for its production in the context of bioeconomy[J]. Journal of Basic Microbiology, 2023, 63(3/4): 257-275. |
| [19] | HE S, ZHAO X, WANG E, et al. Engineered wood: sustainable technologies and applications[J]. Annual Review of Materials Research, 2023, 53: 195-223. |
| [20] | JIA C, CHEN C, KUANG Y, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201801347. |
| [21] | TU H, LI X, LIU Y, et al. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2022.119942. |
| [22] | MAO Y, HU L, REN Z. Engineered wood for a sustainable future[J]. Matter, 2022, 5(5): 1326-1329. |
| [23] | WANG H, CHEN C, FANG L, et al. Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood[J]. Cellulose, 2018, 25(12): 7003-7015. |
| [24] |
LI T, ZHANG X, LACEY S, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
doi: 10.1038/s41563-019-0315-6 pmid: 30911121 |
| [25] | CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201902772. |
| [26] | ATALLA R. The role of the hemicelluloses in the nanobiology of wood cell walls: a systems theoretic perspective[J]. Proceedings of the hemicelluloses workshop, 2005, 10-12: 37-57. |
| [27] | KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200. |
| [28] | CHEN C, LIU D, HE L, et al. Bio-inspired nanocomposite membranes for osmotic energy harves-ting[J]. Joule, 2020, 4(1): 247-261. |
| [29] | ZHANG J, HU Z, HOU Y, et al. Wood hydrogel for efficient moisture-electric generation[J]. ACS Applied Polymer Materials, 2024, 6(15): 8856-8865. |
| [30] | WU Q, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.201902590. |
| [31] | LIU S, YAO Y, LI X, et al. Wood ion pumps enabled by light-responsive MoS2-decorated nanocellulosic channels[J]. ACS Nano, 2024, 18(31): 20353-20362. |
| [32] | YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596. |
| [33] | DONG Q, ZHANG X, QIAN J, et al. A cellulose-derived supramolecule for fast ion transport[J]. Science Advances, 2022. DOI: 10.1126/sciadv.add2031. |
| [34] | ISOGAI A, ZHOU Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 101-106. |
| [35] | LEE J C, LEE J A, LIM D, et al. Fabrication of cellulose nanofiber reinforced thermoplastic compo-sites[J]. Fibers and Polymers, 2018, 19(8): 1753-1759. |
| [36] | LI B, SUN K, XU W, et al. Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems[J]. Nano Research, 2023, 16(5): 6039-6047. |
| [37] | LIANG C, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ″mortar/brick″ structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622. |
| [38] | JIA X, ZHANG M, ZHANG Y, et al. Enhanced selective ion transport in highly charged bacterial cellulose/boron nitride composite membranes for thermo-osmotic energy harvesting[J]. Nano Letters, 2024, 24(7): 2218-2225. |
| [39] |
LI W, ZHOU T, ZHANG Z, et al. Ultrastrong MXene film induced by sequential bridging with liquid metal[J]. Science, 2024, 385(6704): 62-68.
doi: 10.1126/science.ado4257 pmid: 38963844 |
| [40] | WU Z, JI P, WANG B, et al. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harves-ting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105554. |
| [41] | YUAN Z, ZHOU B, YUAN K, et al. High-aligned oppositely-charged nanocellulose/MXene aerogel membranes through synergy of directional freeze-casting and structural densification for osmotic-energy harves-ting[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109450. |
| [42] | LIN Z, FU X, YANG T, et al. Customizable twisted nanofluidic cellulose fibers by asymmetric microfluidics for self-powered urine monitoring[J]. Advanced Functional Materials, 2025. DOI: 10.1002/adfm.202414365. |
| [43] | CAI J, ZHANG L, ZHOU J, et al. Novel fibers prepared from cellulose in NaOH/urea aqueous solution[J]. Macromolecular Rapid Communications, 2004, 25(17): 1558-1562. |
| [44] | TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202000682. |
| [45] | VÁZQUEZ M, DE L, BENAVENTE J. Transport and elastic parameters for dense regenerated cellulose membranes[J]. Desalination, 2009, 245(1): 579-586. |
| [46] | HUANG H, DU Z, HUANG X, et al. Development of enhanced multiwalled carbon nanotube (MWCNT) conductive polymeric nanocomposites by using acidified derivative of MWCNT as dispersant[J]. Journal of Applied Physics, 2020. DOI: 10.1063/1.5130651. |
| [47] | ZHOU B, ZOU J, LIN Z, et al. Aligned regenerated cellulose-based nanofluidic fibers with ultrahigh ionic conductivity and underwater stability for osmotic energy harvesting[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.141167. |
| [48] | ZHOU B, LIN Z, XIE Z, et al. Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108693. |
| [49] | XIE Z, XIANG Z, FU X, et al. Decoupled ionic and electronic pathways for enhanced osmotic energy harvesting[J]. ACS Energy Letters, 2024, 9(5): 2092-2100. |
| [1] | 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55. |
| [2] | 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79. |
| [3] | 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95. |
| [4] | 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134. |
| [5] | 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142. |
| [6] | 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150. |
| [7] | 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10. |
| [8] | 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19. |
| [9] | 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234. |
| [10] | 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37. |
| [11] | 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26. |
| [12] | 陆宁, 陈碧泠, 宋功吉, 罗忆心, 王建南, 许建梅. 纳米纤维在人工神经导管中的应用与研究进展[J]. 纺织学报, 2025, 46(03): 236-244. |
| [13] | 张帆, 程春祖, 郭翠彬, 张东, 程敏, 李婷, 徐纪刚. Lyocell纤维直接成网工艺优化与性能分析[J]. 纺织学报, 2025, 46(03): 34-40. |
| [14] | 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19. |
| [15] | 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160. |
|
||