纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 128-135.doi: 10.13475/j.fzxb.20241004101

• 纺织工程 • 上一篇    下一篇

三维机织复合材料T型接头的拉伸性能

张一帆1,2, 安柳絮1,2, 闫英杰1,2, 邹齐3, 刘晓志4, 郭俊华5, 陈利1,2()   

  1. 1 天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    2 天津工业大学 纺织科学与工程学院, 天津 300387
    3 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
    4 中国直升机设计研究所, 江西 景德镇 333001
    5 江苏科技大学 能源与动力学院, 江苏 镇江 212003
  • 收稿日期:2024-10-21 修回日期:2025-03-29 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 陈利(1968—),男,教授,博士。主要研究方向为先进纺织复合材料。E-mail:chenli@tiangong.edu.cn
  • 作者简介:张一帆(1983—),男,副研究员,博士。主要研究方向为纺织复合材料结构设计。
  • 基金资助:
    国家科技重大专项项目(2017-VI-0011-0177);太行国家实验室技术研发项目(CXPT-2022-013);航空发动机及燃气轮机基础科学中心项目(P2022-B-IV-014-001);天津市海河实验室项目(22HHXCJC00007)

Tensile properties of three-dimensional woven T-joint composites

ZHANG Yifan1,2, AN Liuxu1,2, YAN Yingjie1,2, ZOU Qi3, LIU Xiaozhi4, GUO Junhua5, CHEN Li1,2()   

  1. 1 Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
    2 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3 Key Laboratory of Advanced Composite Materials for National Defense Technology, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
    4 China Helicopter Design and Research Institute, Jingdezhen, Jiangxi 333001, China
    5 College of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
  • Received:2024-10-21 Revised:2025-03-29 Published:2025-07-15 Online:2025-08-14

摘要:

为研究不同交织结构对三维机织复合材料T型接头拉伸性能的影响,设计了不同织物结构以及不同连接方式的复合材料T型接头,并采用树脂传递模塑(RTM)成型工艺复合成型。采用拉伸试验结合非接触全场应变测量系统研究了复合材料T型结构的宏观力学行为,利用Micro-CT技术阐明其失效机制,并细致讨论了不同织物结构和不同连接方式对复合材料T型接头拉伸性能的影响规律。结果表明:交叉连接试样的拉伸强度相比于分叉连接试样提高了12.46%,交叉引入的纬纱可以抵抗拉伸载荷在连接处产生的剪切作用,能有效提高复合材料T型接头的损伤容限;多层多向复合材料T型接头的拉伸强度相比于层联机织复合材料T型接头提升了98.46%,多层多向结构由于±45°斜向纱的引入改善了试样在连接处的应力分布,能有效提高复合材料T型接头底板的抗剪切性能。

关键词: T型接头, 多层多向结构, 三维机织复合材料, 拉伸性能, 失效机制

Abstract:

Objective At present, most three-dimensional woven T-shaped prefabricated bodies are prepared by weaving the flat fabric first, splicing, stitching, or unfolding the fabric in layers. The overall forming weaving method of the prefabricated body and the structural optimization design method of the prefabricated body junction are not ideal for studying the tensile properties of the T-joint of a three-dimensional woven composite material. The influence of the yarn interweaving mode and the composite material structure at the connection of the vertical rib and bottom plate on its tensile properties, failure mode, and damage mechanism were analyzed. The macroscopic mechanical properties of T-joints of various three-dimensional woven composites were analyzed by experimental tests, which provided a reference for the structural design of T-joint composites.

Method T-joint composites with different structures and connection modes were designed, and prefabricated composite molding was carried out by resin transfer molding (RTM) process. Tensile experiments were carried out, and the full-field strain was analyzed using a non-contact full-field strain measurement system (DIC). The failure mechanism and the influence of different structures and connection modes on the tensile properties of the T-joint composites were analyzed.

Results For the three-dimensional layer woven composite T-joint, the interweaving mode of the weft yarn at the connection of the vertical rib and the bottom plate had a certain influence on the tensile strength of the composite material, and the average tensile strength of the two was not much different, but the sample using the cross connection mode was slightly higher than the sample using the forked connection mode, when the sample was introduced into the bottom plate by forked connection mode, the tensile strength and failure displacement of the composite material were smaller, and the final damage degree and range of the sample were larger, and the bearing capacity was completely lost, which was a catastrophic failure. When the sample adopts the weft connection mode of left and right crossing, the weft introduced by the cross can resist the shear effect generated by the tensile load at the connection, which can effectively limit the expansion of the damage to the inside of the specimen, the ultimate stress of the sample was increased by more than 10%, the damage range of the sample was small, the tensile capacity was strong, and the cross structure at the connection between the vertical rid and the bottom plate could effectively improve the tensile property of the composite T-joint. For the composite T-joints with different structures, compared with the three-dimensional layer woven structure, the tensile strength of the composite sample with multilayer multiaxial structure was increased by 98.46%, because the yarn directly bearing the tensile load in the multilayer multiaxial woven structure was only the weft, with the increase of tensile displacement, the matrix cracks, the weft yarn was gradually pulled off, the structure loses its bearing capacity, and the sample finally fails, while the multi-layer multi-directional structure rib and bottom plate contain ±45° oblique yarn. The yarns in different directions played a role in dispersing and buffering the load during the load loading process, and the composite T-joint with multilayer multiaxial structure could effectively alleviate the stress concentration phenomenon in the connection area between the vertical rib and the bottom plate, thereby significantly improving the tensile property of the T-joint.

Conclusion The sample with cross-joints showed better tensile properties during the tensile process, and the cross-introduced weft yarns could resist the shear effect of the tensile load at the joints, which could effectively limit the damage extension to the interior of the samples. For the comparison of the tensile properties of the samples with different structures, the tensile strength of the multilayer multiaxial composite T-joint structure was greatly improved compared with that of the layered interlock woven structure, and the introduction of ±45° diagonal yarns improved the stress distribution of the sample at the joints, which greatly improved the tensile properties of the composite T-joints, and provided references for the application of the composite T-joints in the future.

Key words: T-joint, multi-layer multi-directional structure, 3-D woven composites, tensile property, failure mechanism

中图分类号: 

  • TB332

图1

多层多向机织T型结构示意图"

表1

材料性能参数"

材料 密度/
(g·cm-3)
线密度/
tex
拉伸
强度/
MPa
弹性
模量/
GPa
断裂
伸长率/
%
碳纤维 1.8 500 5 678 290 2.32
树脂 1.2 80 3.5

表2

T型接头预制体及复合材料参数"

试样
编号
纱线线密度/tex 织物密度/(根·cm-1) 织物
结构
连接
方式
纤维体积含量/
%
经纱 纬纱 斜向纱 接结经纱 经纱 纬纱 斜向纱 接结经纱
LTL01-A 1 000 1 000 500 4 4 4 层联 分叉连接 54.52
LTL01-B 1 000 1 000 1 000 500 4 4 4 层联 交叉连接 55.34
MW01 1 000 1 000 1 000 500 4 4 4 4 多层多向 分叉连接 54.82

图2

不同结构及引纬方式示意图"

图3

试验设备"

图4

复合材料T型接头拉伸性能"

图5

复合材料T型接头断裂形貌"

图6

复合材料T型接头CT扫描图"

图7

复合材料T型接头应变云图"

图8

不同连接方式试样拉伸强度"

图9

不同结构试样拉伸强度"

[1] MOSALLAM A, FEO L, ELSADEK A, et al. Structural evaluation of axial and rotational flexibility and strength of web-flange junctions of open-web pultruded composites[J]. Composites Part B: Engineering, 2014, 66: 311-327.
[2] FASCETTI A, FEO L, NISTICÓ N, et al. Web-flange behavior of pultruded GFRP I-beams: a lattice model for the interpretation of experimental results[J]. Composites Part B: Engineering, 2016, 100: 257-269.
[3] THOPPUL S D, FINEGAN J, GIBSON R F J C S, et al. Mechanics of mechanically fastened joints in polymer-matrix composite structures: a review[J]. Composites Science and Technology, 2009, 69(3/4): 301-329.
[4] TAN Y, LI Y, HUAN D, et al. Failure analysis and strengthening mechanism of Z-pinned composite T-joints under tensile loading[J]. Science and Engineering of Composite Materials 2017, 24(5): 783-790.
[5] KIM C H, JO D H, CHOI J H J C S. Failure strength of composite T-joints prepared using a new I-thread stitching process[J]. Composite Structures, 2017, 178: 225-231.
[6] YAN S, ZENG X, LONG A J C P B E. Experimental assessment of the mechanical behavior of 3D woven composite T-joints[J]. Composites Part B: Engineering, 2018, 154: 108-113.
[7] HAO A, SUN B, QIU Y, et al. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(7): 1073-1082.
[8] 孙文博. 填充物、胶膜和Z-pin对复合材料T型接头强度影响对比[J]. 复合材料学报, 2018, 35(1): 110-116.
SUN Wenbo. Comparison of the effects of filler, adhesive film and Z-pin on the strength of composite T-joints[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 110-116.
[9] 段春续. Z-pin增强复合材料T型接头的性能研究[D]. 南昌: 南昌航空大学, 2020:1-7.
DUAN Chunxu. Study on the performance of Z-pin reinforced composite T-joints[D]. Nanchang: Nanchang Hangkong University, 2020:1-7.
[10] 孙晓伦. 多层多向机织复合材料开孔连接性能研究[D]. 天津: 天津工业大学, 2022:1-31.
SUN Xiaolun. Study on the perforated connection properties of multi-layer and multi-directional woven composites[D]. Tianjin: Tiangong University, 2022:1-31.
[11] ZHOU H. The transverse impact responses of 3-D braided composite I-beam[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 158-169.
[12] WU X, GU B, SUN B J O C M. Comparisons of axial compression behaviors between four-directional and five-directional braided composite tubes under high strain rate loading[J]. Journal of Composite Materials, 2016, 50(28): 3905-3924.
[13] ZHANG W, GU B H, SUN B Z. Transverse impact behaviors of 3D braided composites T-beam at elevated temperatures[J]. Journal of Composite Materials, 2016, 50(28): 3961-3971.
[14] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015: 261.
ZHAO Libin, XU Jifeng. Analysis method of advanced composite connection structure[M]. Beijing: Beihang University Press, 2015: 261.
[15] 齐红宇, 王天龙, 梁晓波, 等. 弯曲载荷下机织复合材料T型接头渐进失效分析[J]. 复合材料学报, 2016, 33(6): 1161-1170.
QI Hongyu, WANG Tianlong, LIANG Xiaobo, et al. Progressive failure analysis of woven composite T-joints under bending load[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1161-1170.
[16] 王帅, 陈梦熊, 李伟东, 等. RTM成型非对称复合材料T型接头的拉伸失效机制[J]. 复合材料学报, 2023, 40(1):613-624.
WANG Shuai, CHEN Mengxiong, LI Weidong, et al. Tensile failure mechanism of RTM-molded asymmetric composite T-joints[J]. Journal of Composite Materials, 2023, 40(1):613-624.
[17] BAI J B, DONG C H, XIONG J J, et al. Progressive damage behavior of RTM-made composite T-joint under tensile loading[J]. Composites Part B: Engineering, 2019, 160: 488-497.
[18] 王力立, 杨胜春, 汪厚冰, 等. 蒙皮刚度对复合材料T型接头拉脱失效行为的影响[J]. 科学技术与工程, 2018, 18(16):186-192.
WANG Lili, YANG Shengchun, WANG Houbing, et al. Effect of skin stiffness on the pull-off failure behavior of composite T-joints[J]. Science Technology and Engineering, 2018, 18(16):186-192.
[19] 秦卓, 魏小玲, 胡晗, 等. 机织T字型加筋板复合材料的抗低速冲击性能[J]. 复合材料学报, 2023, 40(6):3673-3682.
QIN Zhuo, WEI Xiaoling, HU Han, et al. Low-speed impact resistance of woven T-shaped stiffened plate composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6):3673-3682.
[20] ZHANG H, GUO J, WEN W, et al. Bending/tensile tests and simulations of the 2.5D woven T-shaped hooking composite structure[J]. Composite Structures, 2018, 206: 155-163.
[21] YAN S, ZENG X, LONG A J C S. Effect of fiber architecture on tensile pull-off behavior of 3D woven composite T-joints[J]. Composite Structures, 2020, 242: 112194.
[22] QUADRINO A, PENNA R, FEO L, et al. Mechanical characterization of pultruded elements: fiber orientation influence vs web-flange junction local problem. Experimental and numerical tests[J]. Composites Part B: Engineering, 2018, 142: 68-84.
[23] 梁双强. 开孔三维编织复合材料力学性能研究[D]. 上海: 东华大学, 2020: 1-56.
LIANG Shuangqiang. Study on mechanical properties of open-cell three-dimensional braided composites[D]. Shanghai: Donghua University, 2020: 1-56.
[24] YAN S, ZENG X, LONG A J C S, et al. Meso-scale modelling of 3D woven composite T-joints with weave variations[J]. Composites Science and Technology, 2019, 171: 171-179.
[25] OUYANG Y, WU X J T R J. A review on the mechanical properties of textile structural composite T-beams[J]. Textile Research Journal, 2020, 90(5/6): 710-727.
[26] LI Y, GAN X, GU B, et al. Dynamic responses and damage evolutions of four-step three-dimensional braided composites subjected to high strain rate punch shear loading[J]. Journal of Composite Materials, 2016, 50(12): 1635-1650.
[1] 江文杰, 郭明瑞, 高卫东. 棉/涤纶短纤皮芯纱及其织物的力学性能[J]. 纺织学报, 2025, 46(03): 49-55.
[2] 敖利民, 潘柳菲, 唐雯, 方瑞峰. 四轴系喂入包覆纱的复合结构与性能[J]. 纺织学报, 2025, 46(01): 52-61.
[3] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[4] 李天宇, 沈伟, 陈立峰, 竺铝涛. 三维角联锁机织复合材料的制备及其弯曲压缩失效机制[J]. 纺织学报, 2024, 45(08): 183-189.
[5] 李久刚, 金鑫鹏, 邓文韬, 秦雪, 张贺, 黄丛, 刘可帅. 氧化铝纱线的合股数与捻度对其强度的影响[J]. 纺织学报, 2023, 44(10): 48-52.
[6] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[7] 周濛濛, 蒋高明. 玻璃纤维衬经衬纬纬编管状织物的制备及其拉伸性能[J]. 纺织学报, 2023, 44(07): 132-140.
[8] 成悦, 左涵, 安琪, 李大伟, 张伟, 付译鋆. 非可吸收倒刺缝合线握持力及其影响因素[J]. 纺织学报, 2023, 44(06): 66-71.
[9] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[10] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[11] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[12] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[13] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[14] 王翔华, 成玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[15] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!