纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 62-70.doi: 10.13475/j.fzxb.20241105501
YUE Hang1, LU Chao2, WANG Chunhong1(
), LI Hanyu3
摘要: 为提升麻纤维力学性能评价效率,以红麻、大麻为例,采用湿化学分析法和单纤维强度测试法对27个麻纤维样本进行化学成分含量和纤维强度测定,采用主成分分析、聚类分析对以3个主要化学成分替代整体化学成分实现对麻纤维强度响应的可行性分析,分别以整体化学成分和3个主要化学成分为自变量,采用支持向量回归模型对纤维强度进行预测,并对预测效果进行评价。结果表明:主成分数量为3时的累计贡献率达94.48%,分别以主成分纤维素、半纤维素、木质素3个主要化学成分为分类依据,所得聚类结果与以全部化学成分为分类依据所得聚类结果的一致性分别为96.3%和92.3%,支持向量回归模型校正样本集的内部交叉验证效果好,对于未知麻纤维样本的预测相对误差均值分别为1.78%和2.19%;利用麻纤维3个主要化学成分可替代全部化学成分实现基于支持向量回归模型的麻纤维强度的预测。
中图分类号:
| [1] | ZHU S Y, XIE J X, SUN Q Q, et al. Recent advances on bast fiber composites: engineering innovations, applications and perspectives[J]. Composites Part B: Engineering, 2024. DOI:10.1016/j.compositesb.2024.111738. |
| [2] | LIU M, MEYER A S, FERNANDO D, et al. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 724-735. |
| [3] | PISUPATI A, WILLAERT L, GOETHALS F, et al. Variety and growing condition effect on the yield and tensile strength of flax fibers[J]. Industrial Crops and Products, 2021. DOI:10.1016/J.INDCROP.2021.113736. |
| [4] | 喻春明, 张彦红, 朱爱国, 等. 苎麻种质资源纤维结晶度变异及其主要品质性状的关联性研究[J]. 中国麻业科学, 2011, 33(5):223-231,239. |
| YU Chunming, ZHANG Yanhong, ZHU Aiguo, et al. Association study of the fiber crystallinity variation and its main quality traits in ramie germplasm resources[J]. Plant Fiber Sciences in China, 2011, 33 (5): 223-231,239. | |
| [5] | 管丽媛, 王钟, 祁宁, 等. 基于近红外光谱技术的亚麻纤维化学成分含量快速测定[J]. 分析测试学报, 2020, 39(6): 795-799. |
| GUAN Liyuan, WANG Zhong, QI Ning, et al. Rapid determination of chemical composition content of flax fiber based on near-infrared spectroscopy technology[J]. Journal of Instrumental Analysis, 2020, 39(6): 795-799. | |
| [6] | LU C, WANG C H, LI C H, et al. Structural and mechanical properties of hemp fibers: effect of progressive removal of hemicellulose and lignin[J]. Journal of Natural Fibers, 2022, 19(16): 13985-13994. |
| [7] | BEROUAL M, TRACHE D, MEHELLI O, et al. Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds[J]. Waste Biomass Valorization, 2021, 12(5): 2779-2793. |
| [8] | SEN M K, HERMANS P H. The structure of the jute fibre: part II: the role of the lignin-hemicellulose complex and other noncellulosic constituents[J]. Journal of the Royal Netherlands Chemical Society-Recueil, 2010, 68: 1079-1105. |
| [9] | WANG C H, BAI S Y, YUE X M, et al. Relationship between chemicalcomposition, crystallinity, orientation and tensile strength of kenaf fiber[J]. Fibers and Polymers, 2016, 17(11): 1757-1764. |
| [10] | 童元建, 禹凡, 王宇, 等. 碳纤维拉伸模量准确测试研究[J]. 高科技纤维与应用, 2014, 39(3): 21-24,31. |
| TONG Yuanjian, YU Fan, WANG Yu, et al. Research on accurate testing of tensile modulus of carbon fiber[J]. High Tech Fibers and Applications, 2014, 39(3): 21-24,31. | |
| [11] | 白肃跃, 洋麻纤维化学成分对其力学性能的调控机理探究[D]. 天津: 天津工业大学, 2017: 23-33. |
| BAI Suyue. Exploration of the regulatory mechanism of chemical composition of jute fiber on its mechanical properties[D].Tianjin: Tiangong University, 2017: 23-33. | |
| [12] | AMIANDAMHEN S O, MEINCKEN M, TYHODA L. Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposite materials[J]. Fibers and Polymers, 2020, 21(4): 677-689. |
| [13] | SAHU P, GUPTA M K. A review on the properties of natural fibres and its bio-composites: effect of alkali treatment[J]. Journal of Materials: Design and Applications, 2020, 234(1): 198-217. |
| [14] | JARIWALA H, JAIN P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications[J]. Journal of Reinforced Plastics and Composites, 2019, 38(10): 441-453. |
| [15] | XIE N M. Explanations about grey information and framework of grey system modeling[J]. Grey Systems, 2017, 7(2): 179-193. |
| [1] | 张文丽, 刘鑫, 张俏俏, 支超, 李建伟, 樊威. 基于废旧亚麻织物的超弹性气凝胶制备及其性能[J]. 纺织学报, 2025, 46(04): 47-55. |
| [2] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
| [3] | 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100. |
| [4] | 崔启璐, 李佳蔚, 潘柳桂, 杨飞, 郁崇文. 黄麻纤维中黄酮类化合物提取工艺优化及表征[J]. 纺织学报, 2021, 42(08): 90-95. |
| [5] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
| [6] | 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43. |
| [7] | 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93. |
| [8] | 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019, 40(04): 72-76. |
| [9] | 金肖克 田伟 朱炜婧 蒋晶晶 祝成炎. 基于高光谱成像系统的纺织品成分定性鉴别[J]. 纺织学报, 2018, 39(10): 50-57. |
| [10] | 石大为 王瑞 陈旭 吴炳洋. 基于射频处理的胡麻生物脱胶工艺[J]. 纺织学报, 2018, 39(03): 73-78. |
| [11] | 王春红 陈祯 李园平 YOUSFANI Sheraz Hussain Siddique 陈雅颂. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15. |
| [12] | 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39. |
| [13] | 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97. |
| [14] | 王晓婷 程隆棣 刘丽芳. 玉米苞叶及其纤维的基本结构与性能[J]. 纺织学报, 2016, 37(07): 7-12. |
| [15] | 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34. |
|
||