纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 96-104.doi: 10.13475/j.fzxb.20241200602

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

辐射热管理织物及其红外光谱设计的研究进展

俞世雄1, 林参天1, 祝顺天1, 胡鸿霞1, 高彦峰1, 马儒军2()   

  1. 1.安徽工程大学 化学与环境工程学院, 安徽 芜湖 241000
    2.南开大学 材料科学与工程学院, 天津 300350
  • 收稿日期:2024-12-04 修回日期:2025-01-31 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 马儒军(1984—),男,教授,博士。主要研究方向为柔性主动/被动制冷材料及其器件。E-mail: malab@nankai.edu.cn
  • 作者简介:俞世雄(1995—),男,讲师,博士。主要研究方向为功能性热管理材料。
  • 基金资助:
    国家重点研发计划项目(2020YFA0711500);国家自然科学基金面上项目(52473215);国家自然科学基金面上项目(52273248);国家自然科学基金面上项目(52303238)

Research progress in radiative thermal management fabrics and their infrared spectral design

YU Shixiong1, LIN Cantian1, ZHU Shuntian1, HU Hongxia1, GAO Yanfeng1, MA Rujun2()   

  1. 1. School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2024-12-04 Revised:2025-01-31 Published:2025-05-15 Online:2025-06-18

摘要:

辐射热管理织物可以选择性地调控太阳光谱和中红外光谱的吸收/反射/透射,有助于维持人体热舒适的同时降低主动式制冷和加热的能耗,对节能降碳具有重要意义。为此,概述了辐射热管理织物的光谱设计原则,并从光子角度出发分析了热动态的过程,介绍了基于此的主要辐射热管理织物类型及其最新研究进展。最后,指出辐射热管理织物在面向商业化过程中面临的挑战和问题,讨论了以实际应用为核心的未来发展方向,提出研发具有光谱吸收率/发射率连续可调特性的辐射热管理织物,以及在织物设计过程中应兼顾光谱设计、舒适性和色彩等要求。

关键词: 功能性织物, 被动式个人热管理, 辐射热管理织物, 零能耗, 光谱设计

Abstract:

Significance Maintaining personal thermal comfort is crucial to personal health. Current thermal management technologies including heating, ventilation and air conditioning (HVAC) can satisfy thermal comfort by indirectly changing the ambient temperature. However, the substantial energy consumption and greenhouse gas emission make them difficult to meet the requirement of sustainable development. More importantly, the indiscriminate space thermal management technologies cannot meet the personal customized requirements. As a result, the concept of personal thermal management draws research attention, considering that human body is an excellent radiator. The personal thermal management fabrics can achieve local and efficient temperature control by regulating the heat transfer pathway between human body and environment (convection, conduction, radiation and sweat), avoiding massive electric energy wasting on space heating and cooling. The radiative thermal management fabrics can selectively regulate the absorption/reflection/transmission of solar and mid-infrared radiation, helping to maintain the thermal comfort of human body while substantially reduce the energy consumption of active heating and cooling. This thermal management strategy with zero energy consumption is of great significance for energy saving and carbon reduction.
Progress At present, radiative thermal management fabrics can be roughly divided into radiative cooling fabrics, i.e. radiative heating fabrics and dual-mode radiative thermal management fabrics according to their spectrum design, and the radiative cooling fabrics can be divided into three categories, namely mid-infrared high transparency, mid-infrared selective emission and mid-infrared non-selective emission. For radiative-cooling fabrics, wearing such fabrics can greatly reduce the energy consumption of air conditioners while maintaining the same thermal comfort. Similarly, the radiative heating fabrics absorb solar energy while reducing the radiative heat dissipation of the human body, thus meeting the thermal comfort in the cold environment, and greatly reducing the energy consumption of active heating equipment. The dual-mode thermal management fabric overcomes the contradiction between the fixed spectral design and the dynamic environment, which is conducive to the adaptive thermal management.
Conclusion and Prospect Although great progress has been achieved in the research of single mode or dual mode radiative thermal management fabrics, there are still some problems to be solved so as to bridge the gap between scientific research and practical application. (1) Neither single nor dual mode thermal management fabrics can achieve continuous adjustment of spectral emissivity/absorptivity, so they cannot achieve continuous temperature modulation, which is difficult to meet precise personal thermal comfort. (2) Large area preparation of radiative thermal management fabric is not equivalent to mass preparation. Therefore, the low-cost continuous fabrication of radiative thermal management fabric is of practical significance for its commercialization. (3) Considering that color is the inevitable requirement of the garment industry, the current radiative thermal management fabrics still face the contradiction between color and selective spectrum. Therefore, under the premise of meeting the requirement of selective spectrum, simplifying the preparation method and reducing the preparation cost are helpful to popularize the application of colored radiative thermal management fabrics. (4) The functional materials used in the radiative thermal management fabric reduce the wearing comfort. Thermal management performance and wearability should be considered at the same time in the design of fabrics.

Key words: functional fabric, passive personal thermal management, radiative thermal management fabric, zero energy consumption, spectral design

中图分类号: 

  • TS106

图1

辐射热管理织物的光谱设计"

图2

辐射冷却织物研究进展"

图3

辐射保温/加热织物研究进展"

图4

双模式辐射热管理织物的研究进展"

[1] HU Run, LIU Yida, SHIN Sunmi, et al. Emerging materials and strategies for personal thermal manage-ment[J]. Advanced Energy Materials, 2020. DOI: 101002/aenm.201903921.
[2] KIM Gunwoo, PARK Kyuin, HWANG Kyung-Jun, et al. Highly sunlight reflective and infrared semi-transparent nanomesh textiles[J]. ACS Nano, 2021, 15(10): 15962-15971.
doi: 10.1021/acsnano.1c04104 pmid: 34661392
[3] ZHANG Xiaoshuang, YANG Weifeng, SHAO Zhuwang, et al. A moisture-wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 2022, 16(2): 2188-2197.
[4] CUI Ying, GONG Huaxin, WANG Yujie, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018, 30(14): 1706807.
[5] GONG Wei, GUO Yang, YANG Weifeng, et al. Scalable and reconfigurable green electronic textiles with personalized comfort management[J]. ACS Nano, 2022, 16(8): 12635-12644.
doi: 10.1021/acsnano.2c04252 pmid: 35930746
[6] PENG Yucan, CUI Yi. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742.
[7] ZHU Bin, LI Wei, ZHANG Qian, et al. Subambient daytime radiative cooling textile based on nanoprocessed silk[J]. Nature Nanotechnology, 2021, 16(12): 1342-1348.
doi: 10.1038/s41565-021-00987-0 pmid: 34750560
[8] DENG Weijie, SHEN Chao, WANG Panlong, et al. Continuous fabrication of polyethylene microfibrilar bundles for wearable personal thermal management fabric[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.149255.
[9] LAN Xiaohua, WANG Yi, PENG Jiebin, et al. Designing heat transfer pathways for advanced thermoregulatory textiles[J]. Materials Today Physics, 2021. DOI: 10.1016/j.mtphys.2021.100342.
[10] WU Mingrui, SHAO Ziyu, ZHAO Nifang, et al. Biomimetic, knittable aerogel fiber for thermal insulation textile[J]. Science, 2023, 382(6677): 1379-1383.
doi: 10.1126/science.adj8013 pmid: 38127754
[11] LUO Hao, ZHU Yining, XU Ziquan, et al. Outdoor personal thermal management with simultaneous electricity generation[J]. Nano Letters, 2021, 21(9): 3879-3886.
[12] WU Jiajia, WANG Mingxu, DONG Li, et al. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management[J]. ACS Nano, 2022, 16(8): 12801-12812.
doi: 10.1021/acsnano.2c04971 pmid: 35947793
[13] HSU Pochun, SONG Alex Y, CATRYSSE Peter B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
pmid: 27701110
[14] PENG Yucan, CHEN Jun, SONG Alex Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
[15] CAI Lili, SONG Alex Y., LI Wei, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802152.
[16] TONG Jonathan K, HUANG Xiaopeng, BORISKINA Svetlana V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
[17] SHAN Xiameng, LIU Ling, WU Yusi, et al. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science, 2022. DOI: 10.1002/advs.202201190.
[18] ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954
[19] ZHANG Quan, LV Yiwen, WANG Yufeng, et al. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving[J]. Nature Communications, 2022, 13(1): 4847.
[20] XUE Xiao, QIU Meng, LI Yanwen, et al. Creating an eco-friendly building coating with smart subambient radiative cooling[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201906751.
[21] KIM Hyeon Ho, IM Eunji, LEE Seungwoo. Colloidal photonic assemblies for colorful radiative cooling[J]. Langmuir, 2020, 36(23): 6589-6596.
doi: 10.1021/acs.langmuir.0c00051 pmid: 32370514
[22] LIU Ruina, ZHAO Siming, WU Xueke, et al. Radiative cooling meta-fabric integrated with knitting perspiration-wicking and coating heat conduction[J]. ACS Nano, 2025, 19(1), 826-836.
doi: 10.1021/acsnano.4c12196 pmid: 39810371
[23] LI Jinlei, LIANG Yuan, LI Wei, et al. Protecting ice from melting under sunlight via radiative cooling[J]. Science Advances, 2022. DOI:10.1126/sciadv.abj9756.
[24] CHEN Yijun, MANDAL Jyotirmoy, LI Wenxi, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aaz5413.
[25] CAI Lili, PENG Yucan, XU Jinwei, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486.
doi: 10.1016/j.joule.2019.03.015
[26] ROH Jungsim, CHI Yongseung, KANG Taejin. Thermal insulation properties of multifunctional metal composite fabrics[J]. Smart Materials and Structures, 2009, 18(2): 025018.
[27] HSU Pochun, LIU Xiaoge, LIU Chong, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2014, 15(1): 365-371.
[28] CAI Lili, SONG Alex Y., WU Peilin, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 2017, 8(1): 496.
doi: 10.1038/s41467-017-00614-4 pmid: 28928427
[29] LI Lei, SHI Mengke, LIU Xiaoya, et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage[J]. Advanced Functional Materials, 2021, 31(35): 2101381.
[30] WANG Zongqian, YANG Haiwei, LI Yu, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15726-15736.
[31] SHI Mengke, SHEN Mingming, GUO Xinyi, et al. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating[J]. ACS Nano, 2021, 15(7): 11396-11405.
doi: 10.1021/acsnano.1c00903 pmid: 34165297
[32] YU Shixiong, ZHOU Yuetong, BAI Peijia, et al. Anodization-processed colored radiative thermoregulatory film[J]. Nano Letters, 2024, 24(46): 14758-14765.
doi: 10.1021/acs.nanolett.4c04073 pmid: 39514293
[33] YUAN Hao, LIU Ruojuan, CHENG Shuting, et al. Scalable fabrication of dual-function fabric for zero-energy thermal environmental management through multiband, synergistic, and asymmetric optical modulations[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202209897.
[34] HSU Pochun, LIU Chong, SONG Alex Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700895.
[35] LI Keqiao, LI Meng, LIN Chongjia, et al. A Janus textile capable of radiative subambient cooling and warming for multi-scenario personal thermal manage-ment[J]. Small, 2023. DOI: 10.1002/smll.202206149.
[36] CHAI Jiale, KANG Zhanxiao, YAN Yishu, et al. Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation[J]. Cell Reports Physical Science, 2022. DOI: 10.1016/j.xcrp.2022.100958.
[37] LI Xiuqiang, MA Boran, DAI Jingyuan, et al. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management[J]. Science Advances, 2021. DOI: 10.1126/sciadv.abj7906.
[38] WANG Yang, REN Jing, YE Chao, et al. Thermochromic silks for temperature management and dynamic textile displays[J]. Nano-Micro Letters, 2021. DOI: 10.1007/s40820-021-00591-w.
[39] ZHANG Xu A., YU Shangjie, XU Bbeibei, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.
doi: 10.1126/science.aau1217 pmid: 30733415
[40] YU Shixiong, ZHANG Quan, LIU Lili, et al. Thermochromic conductive fibers with modifiable solar absorption for personal thermal management and temperature visualization[J]. ACS Nano, 2023, 17(20): 20299-20307.
doi: 10.1021/acsnano.3c06289 pmid: 37831602
[1] 孙晚红, 张鹏飞, 陈勇, 张林, 潘跃山, 宋飞虎, 刘恩星, 王玉萍. 智能发热服装用柔性碳纳米管电加热元件的制备及应用[J]. 纺织学报, 2025, 46(05): 17-22.
[2] 张喆, 王瑞, 蔡涛. 图案化耐久水性聚氨酯/碳纳米管涂层多功能抗静电复合织物的高效经济制备[J]. 纺织学报, 2025, 46(02): 207-217.
[3] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[4] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[5] 郭晨宇, 蒋云, 杨瑞华. 基于环锭纺的三组分负泊松比纱制备及其性能[J]. 纺织学报, 2024, 45(10): 55-63.
[6] 吴涛, 李婕, 鲍劲松, 王新厚, 崔鹏. 羊毛混纺面料生产流程的碳图谱建模与应用[J]. 纺织学报, 2024, 45(09): 97-105.
[7] 史伟民, 李洲, 陆伟健, 屠佳佳, 徐寅哲. 基于改进Yolov5模型的纱筒余纱量检测方法[J]. 纺织学报, 2024, 45(07): 196-203.
[8] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[9] 居傲, 向卫宏, 崔艳超, 孙颖, 陈利. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(02): 67-76.
[10] 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202.
[11] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[12] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[13] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[14] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[15] 张倩, 牛文鑫, 姜成华, 高晶, 王璐. 对抗微重力环境下肌肉骨骼废用性病变的压力服装研究进展[J]. 纺织学报, 2023, 44(01): 38-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!